

Providing sustainable environmental strategies,
management and monitoring solutions
to industry and government.

SHEFFIELD RESOURCES LTD
THUNDERBIRD MINERAL SANDS PROJECT
FLORA AND FAUNA SURVEY
SCOPING SUUDY REPORT

This page has been left blank intentionally.

SHEFFIELD RESOURCES LTD. THUNDERBIRD MINERAL SAND PROJECT FLORA AND FAUNA SURVEY SCOPING STUDY REPORT

	Document Status								
				Approved for Issue					
Rev	Author	Reviewer	Date Name		Distributed To	Date			
А	C Parker J Forbes-Harper	R Young	29/07/2013						
В	C Parker J Forbes-Harper	R Young	29/07/2013	K Bauer-Simpson	M Teakle	31/07/2013			
С	C Parker N Jackett	R Young	16/08/2013	K Bauer-Simpson	M Teakle	16/08/2013			
D	R Omodei	M Macdonald	28/08/2013	K Bauer-Simpson	M Teakle	28/08/2013			

ecologia Environment (2013). Reproduction of this report in whole or in part by electronic, mechanical or chemical means including photocopying, recording or by any information storage and retrieval system, in any language, is strictly prohibited without the express approval of Sheffield Resources Limited and *ecologia* Environment.

Restrictions on Use

This report has been prepared specifically for Sheffield Resources Limited. Neither the report nor its contents may be referred to or quoted in any statement, study, report, application, prospectus, loan, or other agreement document, without the express approval of Sheffield Resources Limited and *ecologia* Environment.

ecologia Environment 1025 Wellington Street WEST PERTH WA 6005

Phone: 08 9322 1944 Fax: 08 9322 1599

Email: admin@ecologia.com.au

August 2013 ii

TABLE OF CONTENTS

1	INTRO	INTRODUCTION1						
1.1	PROJEC	T OVERVIEW	1					
1.2	SURVE	′ EFFORT	1					
2	RESULT	'S	5					
2.1	FLORA.		5					
	2.1.1	Species richness	5					
	2.1.2	Sampling adequacy	5					
	2.1.3	Threatened and priority flora recorded within the Thunderbird study area	6					
	2.1.4	Introduced flora	11					
	2.1.5	Flora representing range extensions	16					
	2.1.6	Species of Interest	17					
2.2	VEGETA	ATION	18					
	2.2.1	Priority Ecological Communities (PECs)	18					
2.3	FAUNA		20					
	2.3.1	Conservation significant fauna recorded within the Thunderbird study area	20					
	2.3.2	Fauna representing range extensions	23					
	2.3.3	Other conservation significant fauna	23					
	2.3.4	Species recorded	24					
3	DISCUS	SION	29					
3.1	FLORA.		29					
	3.1.1	Regional distribution of conservation significant flora	29					
	3.1.2	Comparison with nearby surveys	29					
3.2	VEGETA	ATION	30					
	3.2.1	TEC and PEC	30					
3.3	FAUNA		30					
	3.3.1	Regional distribution of conservation significant fauna	30					
	3.3.2	Impact on conservation significant fauna	31					
	3.3.3	Comparison with nearby surveys	31					
	3.3.4	Habitat potentially supporting conservation significant fauna	31					
3.4	ASSESS	MENT OF BIOLOGICAL RESULTS AGAINST PROJECT PATHWAY	33					
4	CONCL	USION AND RECOMMENDATIONS	37					
4.1	FLORA .	AND VEGETATION	37					
4.2	VERTE	BRATE FAUNA	37					
4.3	INVERT	INVERTEBRATE FAUNA37						

5	REFERENCES	39
5	REFERENCES	• • • • • • • •

August 2013 iv

TABLES

Table 2.1 – I	Diversity of the flora of the study area	5
Table 2.2 – I	Most represented families and genera in the study area	5
Table 2.3 – I	Priority Flora recorded within the Thunderbird study area	7
Table 2.4 – I	Introduced species recorded in the study area	11
Table 2.5 – I	Environmental status of introduced species recorded in the study area	12
Table 2.6 – I	Introduced flora recorded in the study area	13
Table 2.7 –	Taxa with range extensions greater than 100 km	16
Table 2.8 – 0	Conservation significant fauna recorded during the survey	20
Table 2.9 – I	Potential SRE fauna relevant to the Thunderbird study area	21
Table 2.10 -	- SRE specimens recorded during the survey	21
Table 2.11 -	- Vertebrate species recorded during the survey	24
Table 3.1 – I	Distribution of Priority Flora recorded in the study area within Western Australia	29
Table 3.2 – I	Priority Flora present within nearby surveys	30
Table 3.1 – <i>i</i>	Assessment of biological results against project feasibility	34
	FIGURES	
Figure 1.1 –	Location of the study area	2
Figure 1.2 –	Quadrat, fauna site and SRE locations within the study area	3
Figure 2.1 –	Average randomised species accumulation curve for the study area	6
Figure 2.2 –	Priority flora of the study area	10
Figure 2.3 –	Introduced species locations in the study area	15
Figure 2.4 –	Cyperus sp. (AIC 1501-0149)	17
Figure 2.5 –	Identified and potential PECs of the study area	19
Figure 2.6 –	Conservation significant fauna recorded during the survey	22
	APPENDICES	
Appendix A	Flora Quadrat Locations	41
Appendix B	Tiora Quarat Educations	
	Flora Species List Recorded in the Project Area	45
Appendix C	Flora Species List Recorded in the Project Area	53 gical

ACRONYMS

ARRP Act Agriculture and Related Resources Protection Act 1976

BAM Act Biosecurity and Agriculture Management Act 2007

BOM Bureau of Meteorology

DEC Department of Environment and Conservation (now DPaW)

DEFL The DEC's Threatened (Declared Rare) Flora Database

DPaW Department of Parks and Wildlife (formerly DEC)

DRF Declared Rare Flora

ESA Environmentally Sensitive Area

EPA Environmental Protection Authority
EP Act Environmental Protection Act 1986

EPBC Act Environment Protection and Biodiversity Conservation Act 1999

IBRA Interim Biogeographic Regionalisation for Australia

PEC Priority Ecological Community

SRE Short-range Endemic

TEC Threatened Ecological Community

WAHERB Western Australian Herbarium
WC Act Wildlife Conservation Act 1950

WAOL Western Australian Organism List

August 2013 vi

EXECUTIVE SUMMARY

Sheffield Resources Limited has commissioned *ecologia* Environment (*ecologia*) to undertake a Level 2 Flora and Fauna Survey of its Thunderbird Project, located 70 km west of Derby on the Dampier Peninsula. A Level 2 flora and vegetation and a Level 1 fauna survey was completed by *ecologia* in the area in 2012. In 2013, the study area was expanded and Level 2 surveys completed (i.e. the second phase of the Level 2 flora and vegetation assessment and the first phase of the Level 2 fauna assessment). This report outlines the key issues identified from those surveys with a full report to follow in September 2013.

Flora

During the two-phase flora survey, 284 species were recorded from 71 quadrats surveyed over 36 person days. One species collected from two sites to the north of the study area, *Cyperus* sp. (AIC 1501-0149), is potentially a new taxon.

Six Priority taxa were recorded in the study area:

- Fuirena nudiflora (Priority 1);
- Eriachne sp. Dampier Peninsula (K.F.Kenneally 5946) (Priority 3);
- Fuirena incrassata (Priority 3);
- Pterocaulon intermedium (Priority 3);
- Tephrosia valleculata (Priority 3); and
- Triodia caelestialis (Priority 3).

Seven introduced species were recorded within the study area:

- Cynodon dactylon;
- Digitaria ciliaris;
- Echinochloa colona;
- Sida acuta (declared pest);
- Stylosanthes hamata;
- Stylosanthes scabra; and
- Tridax procumbens.

Vegetation unit *EtMvSi* (*Eucalyptus tectifica* and *Melaleuca viridiflora* open woodland, over dense tussock grassland) closely resembles vegetation associated with a Priority Ecological Community (PEC) at Lolly Well Springs, 40 km to the north-west. The impact to the vegetation units *EtMvSi* from an altered water table could be significant.

Fauna

During the first phase of the Level 2 fauna survey, conducted over 54 person days, 124 terrestrial vertebrate fauna species were recorded. In addition, 124 invertebrate fauna specimens from six taxonomic groups were collected. Four conservation significant vertebrate species, all birds, were recorded:

- Australian Bustard (Ardeotis australis: Priority 4);
- Bush Stone-curlew (Burhinus grallarius: Priority 4);
- Fork-tailed Swift (Apus pacificus: Migratory, Schedule 3); and
- Rainbow Bee-eater (*Merops ornatus*: Migratory, Schedule 3).

To date, seven confirmed or potential Short-range Endemic (SRE) fauna species have been identified. These include two snails:

- Rhagada bulgana (confirmed SRE); and
- Quistrachia leptogramma (Potential SRE).

Two isopods (crustaceans):

Buddelundia '74' (potential SRE); and

August 2013 vii

• Buddelundiinae 'NE Broome' (potential SRE).

Three scorpions:

- Lychas 'broome' (potential SRE);
- Urodacus 'kraepelini' (potential SRE); and
- Urodacus sp. indet. (potential SRE).

All four of the conservation significant bird species are abundant and widespread, and the development of the Thunderbird area is not expected to have a significant impact on these species or their habitats.

Distribution and habitat data suggest that impacts on the two SRE snail species may not be significant. *ecologia* is currently awaiting taxonomic reports from the Western Australian Museum (WAM) for four reptile species, as well as for the mygalomorph, opilionid, pseudoscorpion and selenopid invertebrate specimens which have been submitted for species confirmation. These reports may identify further SRE species. Further assessments may be required to identify the presence or absence of the potential SRE species in the region surrounding the study area. Habitat potentially suitable for the Greater Bilby (*Macrotis lagotis*: Vulnerable, Schedule 1) may exist within the study area.

Implications

The presence of conservation significant flora, fauna and vegetation communities within the vicinity of the Thunderbird Mineral Sands project may affect the design and pathway of the project. Biological factors identified as being of conservation significance and that may have an impact on the project are assessed in the following table. In addition to addressing species of conservation significance confirmed to be present in the study area during the preceding surveys, the assessment in the table below is based on four assumptions:

- Cyperus sp. (AIC 1501-0149) is confirmed to be a new species.
- The potential PEC is confirmed to be a new PEC.
- Troglofauna and stygofauna are recorded within the study area.
- Conservation significant fauna with the potential to occur are found to be present.

Assuming that the project is formally assessed by the Environmental Protection Authority (EPA), the likely implications for Sheffield are:

- Further assessment is currently in process for Greater Bilby and Gouldian Finch as part of the Level 2 survey. If suitable habitat is found in the study area for either of these species a referral under the EPBC Act would be required. If deemed to be a controlled action and impacts cannot be avoided or mitigated, offsets may be required. Offsets can include any or all of the following:
 - o Purchase and legal protection of land of equivalent habitat;
 - DPaW financial contribution for management or research;
 - Fencing of the protected land;
 - Monitoring of the protected land; and/or
 - Feral animal control within the protected land.
- Monitoring of conservation significant flora (Priority 1 flora) which may be directly or indirectly impacted by the project.
- Monitoring of the potential PEC which may be directly or indirectly impacted by the project.
- 'Licence to take' to be acquired for any clearing of Priority 3 flora and flora representing range extensions.

August 2013 viii

 Avoidance and utilisation of buffer zones applied to conservation significant flora and the potential PEC. The default direct impact buffer used by DPaW for a Priority Flora species is 50 m.

Although this project is likely to attract Ministerial conditions that will affect the project and (to some degree) the project schedule, no biological issues identified are foreseen to prevent the commencement of the Thunderbird Mineral Sands project.

August 2013 ix

Assessment of biological results against project feasability

Environmental Factor	Likelihood of Occurrence	Likely action required	Predicted conditions on the project (as set by the EPA)	Potential effect on project
EPBC listed fauna (Bilby and/or Gouldian Finch)	Based on regional records, Bilby has a high likelihood of occurrence Suitable habitat for the Gouldian Finch is present, but this species has not been recorded close to the impact area	 Targeted survey (currently in process as a component of the Level 2 survey) to assist with determining the likelihood of occurrence within and outside of the impact area An EPBC referral to the Minister of Sustainability, Environment, Water, Population and Communities for the approval of an action that could impact the Bilby and/or Gouldian Finch. Included in the referral is the preparation of a Fauna Management Plan for the Bilby and/or Gouldian Finch, to reduce the likelihood of further assessment 	Monitoring of the Bilby and/or Gouldian Finch for the duration of time impacting the species Potential offsets package may include funding futher research of the Bilby and/or Gouldian Finch, or purchasing available habitat equivalent to the area and quality of habitat being impacted	 Financial An approximate cost of \$25,000 to prepare a referral application per EPBC listed species, if required Additional costs in preparing a Fauna Management Plan for the Bilby and/or Gouldian Finch Cost involved in (annual) monitoring surveys for the Bilby and/or Gouldian Finch, if required Cost involved in offsets, based on the size of area and significance of of impact to the Bilby and/or Gouldian Finch
Troglofauna – subterranean cave-dwelling fauna	Not previously recorded in region, but EPA Environmental Assessment Guideline No. 12 suggests a high likelihood of occurrence within the region	 If troglofauna are recorded during the pilot, further sampling required to determine species presence outside of the impact area Geological studies to show that voids occupied by troglofauna extend outside of the impact area 	 Second phase of troglofauna surveying Monitoring of troglofauna for the duration of the mining operations 	Financial Cost involved in second phase of surveying Cost involved in monitoring surveys for the duration of the mining operations
Stygofauna – subterranean aquatic fauna	Not previously recorded in region, but EPA Environmental	If stygofauna are recorded during the pilot study, further sampling required to determine species presence outside of the impact area	Second phase of stygofauna surveyingMonitoring of stygofauna for	Financial Cost involved in second phase of surveying

Environmental Factor	Likelihood of Occurrence	Likely action required	Predicted conditions on the project (as set by the EPA)	Potential effect on project
	Assessment Guideline No. 12 suggests a high likelihood of occurrence within the region	Hydrological studies to determine the impact area of of the operations on the water table and also until the draw down cone has restored to its original levels after mining operations	the duration of operations,Modelling of drawdown impact area	Cost involved in monitoring surveys until the draw down cone is restored to original levels Cost of hydrological modelling and reporting
Priority 1 flora species, Fuirena nudiflora	100% (recorded)	 Targeted survey to ensure this species had a wider regional distribution Hydrological studies if the project is impacting the flow of water downstream to a degree that could cause flooding upstream where this species is located 	 Buffer or 'no impact' zones placed around known locations of this species Monitoring to ensure this species is not being affected Licence to take required 	 Financial Cost involved in additional surveys and approvals Cost of licence and licence preparation Delay If left to the late stages of the project, the increased survey effort could cause delays
Cyperus sp. (AIC 1501-0149) – Potential new species	100% (recorded)	 Targeted survey to ensure this species had a wider regional distribution Hydrological studies if the project is impacting the flow of water downstream to a degree that could cause flooding upstream where this species is located 	 Buffer or 'no impact' zones placed around known locations of this species Monitoring to ensure this species is not being affected Hydrological study 	 Financial Cost involved in additional surveys and approvals Cost of licence and licence preparation Delay If left to the late stages of the project, the increased survey effort could cause delays
Priority 3 flora species	100% (recorded)	Targeted survey to confirmation that these species are present outside of the study area	Licence to take required	 Financial Cost involved in additional surveys and approvals Delay

August 2013 xi

Environmental Factor	Likelihood of Occurrence	Likely action required	Predicted conditions on the project (as set by the EPA)	Potential effect on project
				 If left to the late stages of the project, the increased survey effort could cause delays
Potential Priority 3 Priority Ecological Community	Potential PEC community recorded, PEC status not confirmed	 Hydrological studies to determine if the project will have an impact on the potential PEC Determination of whether or not this is in fact a PEC by submission to DPaW 	Buffer or 'no impact' zones placed around the potential PEC Hydrological Monitoring to ensure the PEC is not being affected	 Financial Cost involved in additional surveys and approvals Delay If left to the late stages of the project, the increased survey effort could cause delays
Flora taxa representing range extensions	100% (recorded)	 Desktop assessment of regional distribution (in this report) Targeted regional survey if any taxa are identified to be poorly repesented 	 Licence to take required Monitoring of high importance range extensions 	 Financial Cost involved in additional surveys and approvals Cost of licence and licence preparation Delay If left to the late stages of the project, the increased survey effort could cause delays

August 2013 xii

1 INTRODUCTION

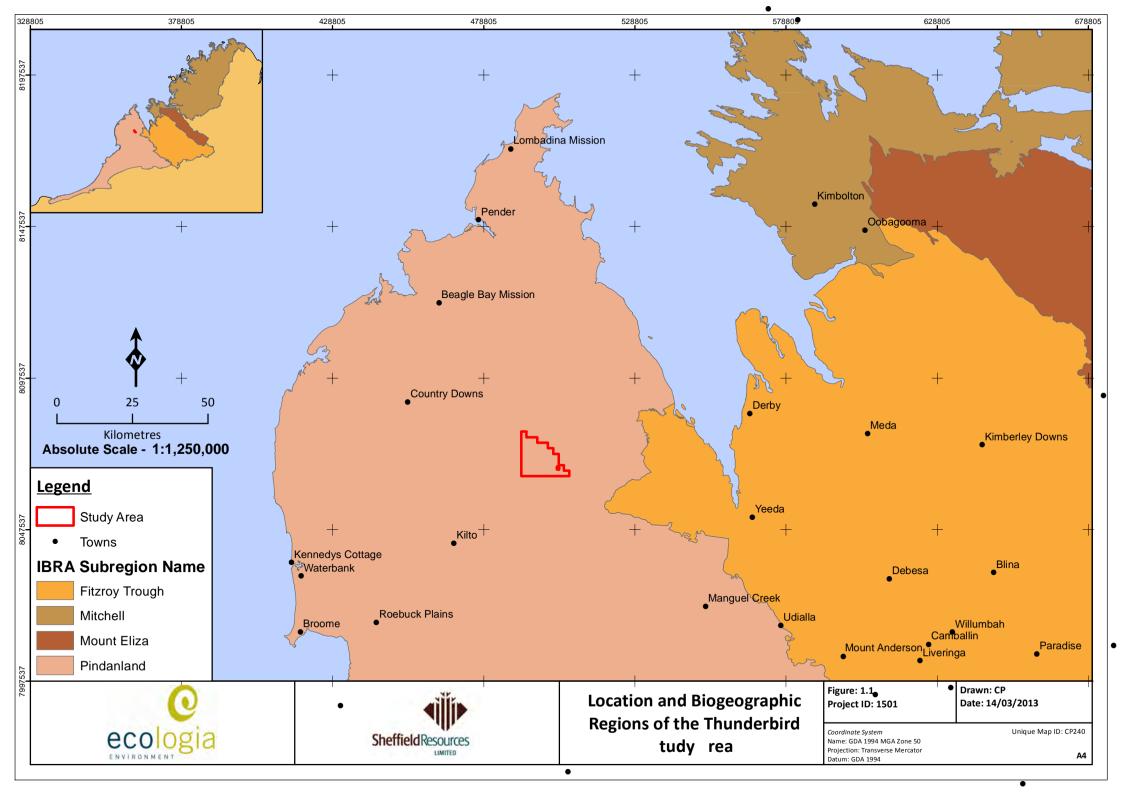
1.1 PROJECT OVERVIEW

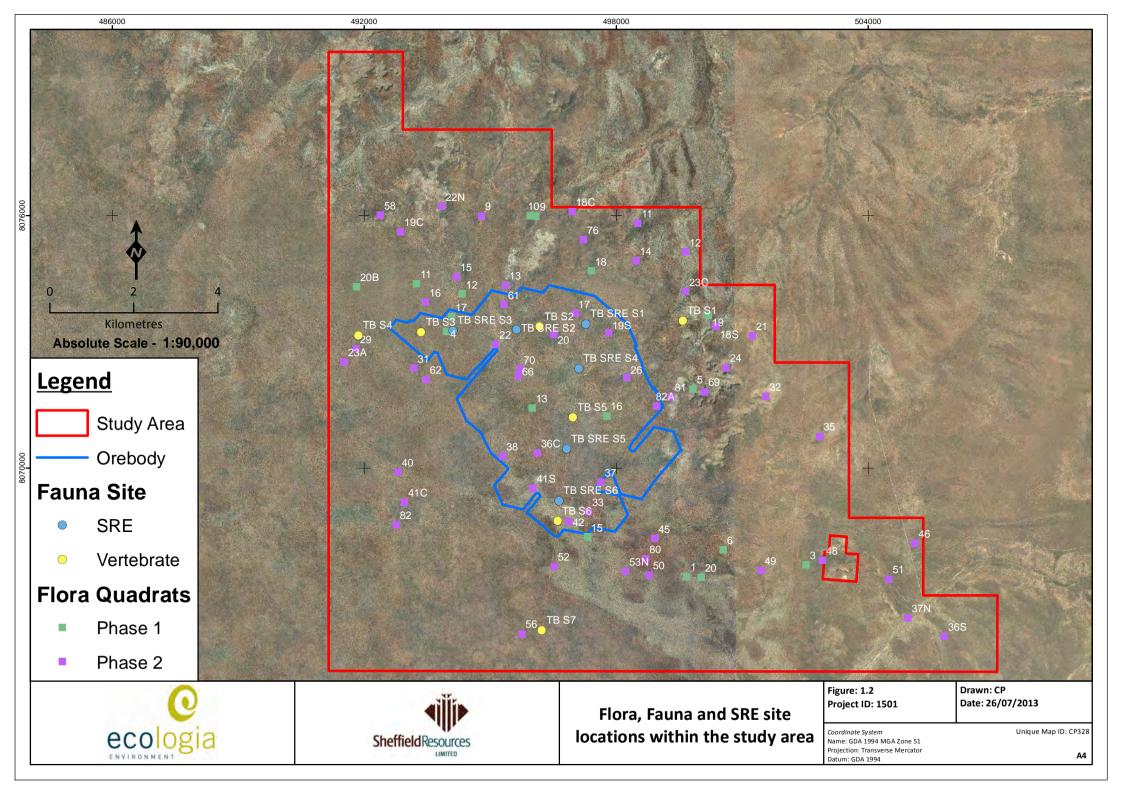
Sheffield Resources Limited (Sheffield) is an exploration company with significant mineral sands and additional nickel, talc and iron assets, all located within the state of Western Australia. Sheffield is exploring the Thunderbird mineral sands deposit, which is located in the Canning basin.

Sheffield has commissioned *ecologia* Environment (*ecologia*) to undertake a Level 2 Flora Survey of the Thunderbird Project, located 70 km west of Derby on the Dampier Peninsula (Figure 1.1). Sheffield seeks to gain an understanding of the flora and fauna of the Thunderbird area (study area) and identify the environmental assessment implications that may apply to developing a mineral sands mining operation.

1.2 SURVEY EFFORT

The two-phase flora survey involved a combination of sampling within 71 bounded quadrats (Appendix A, Figure 1.2) each 2,500 m² in area, in accordance with Guidance Statement 51: *Terrestrial Flora and Vegetation Surveys for Environmental Impact Assessment in Western Australia* (Environmental Protection Authority 2004), supplemented by a series of linked field traverses. Linked traverses assisted in maximising the floristic inventory and thus increasing the probability of recording flora of potential significance.


The flora and vegetation of the study area was surveyed in two phases over two separate trips in conjunction with fauna surveys. The flora surveys totalled 36 person days, and the fauna survey 60 days. Six person days of the phase 2 flora survey were spent assisting with vertebrate fauna trap site installation. The timing of the surveys was as follows:


- Survey 1; 21 to 26 June 2012 (6 person days each for flora and fauna); and
- Survey 2; 4 to 15 April 2013, (30 person days for flora, 54 for fauna).

The first fauna survey carried out was in accordance with a Level 1 assessment, and the second a Level 2 assessment. These surveys were conducted in accordance with Environmental Protection Authority (EPA) Guidance Statement No. 20: Sampling of Short-range Endemic Invertebrate Fauna for Environmental Impact Assessment in Western Australia (EPA 2009), Guidance Statement No. 56: Terrestrial Fauna Surveys for Environmental Impact Assessment in Western Australia (EPA 2004), and the principles outlined in EPA Position Statement No. 3: Terrestrial Biological Surveys as an Element of Biodiversity Protection (EPA 2002).

During the first phase of the Level 2 survey, seven vertebrate fauna trap sites were installed along with six Short-range Endemic (SRE) dry pit-fall trapping sites. Survey methods also involved diurnal and nocturnal opportunistic searches for vertebrates and SREs, as well as the deployment of motion cameras and SM2BAT bat call recording devices.

This page has been left blank intentionally.

2 RESULTS

2.1 FLORA

2.1.1 Species richness

A total of 284 flora taxa, including subspecies, varieties and hybrids, were recorded during the phase one and two field assessments of the study area (Table 2.1). Thirty aditional taxa were not fully identified due to lack of reproductive material and are likely to be duplicates of taxa already listed. These taxa were excluded from the data, resulting in the 284 species total. The total diversity of the flora (excluding those not fully identified) is summarised in Table 2.2. A complete list of the flora recorded in the study area is included as Appendix B.

Table 2.1 – Diversity of the flora of the study area

Number of Taxa Recorded	Number of Families	Number of Genera	Number of Families Represented by a Single Taxon	Number of Genera Represented by a Single Taxon
284	54	151	21	93

The families and genera represented by the greatest number of taxa and the most frequently recorded species in the study area are listed in Table 2.2. There is a high presence of the predominantly annual families; Poaceae, Cyperaceae, Amaranthaceae and Euphorbiaceae. This indicates that the two field surveys occurring in the wet and the dry season were effective in recording a high proportion of species present within the study area under different seasonal conditions.

Table 2.2 – Most represented families and genera in the study area

•	J	•
Most Common Families	Most Common Genera	Most Frequently Recorded Taxa
		Brachychiton diversifolius subsp. diversifolius (65 quadrats)
Poaceae (49 taxa)		Triodia caelestialis (54 quadrats)
Fabaceae (43 taxa)	Fimbristylis (13 taxa)	Spermacoce occidentalis (52 quadrats)
Cyperaceae (30 taxa)	Acacia (9 taxa)	Corymbia greeniana (49 quadrats)
Malvaceae (18 taxa)	Euphorbia (9 taxa)	Acacia tumida var. tumida (48 quadrats)
Amaranthaceae (10 taxa)	Cyperus (8 taxa)	Eriachne obtusa (42 quadrats)
Euphorbiaceae (10 taxa)	Tephrosia (8 taxa)	Grevillea refracta subsp. refracta (42 quadrats)
Myrtaceae (10 taxa)		Sorghum timorense (42 quadrats)
		Terminalia canescens (41 quadrats)

2.1.2 Sampling adequacy

Flora sampling adequacy was estimated using SAC analysis (Colwell 2009) and extrapolation of the curve to the asymptote using Michaelis-Menten modelling (Figure 2.1). Using this analysis, the incidence-based coverage estimators of species richness; ICE Mean and Chao 2 Mean were determined as 325 and 335, respectively. The total number of taxa collected in the study area quadrats (excluding opportunistic collections) was 273 if all potential duplicates not fully identified to subspecies level (and therefore possibly repeats of other taxa) are also excluded. Thus it is estimated that between 81.5% and 84% of the taxa present in the study area were recorded.

Figure 2.1 – Average randomised species accumulation curve for the study area

2.1.3 Threatened and priority flora recorded within the Thunderbird study area

No EPBC Act (*Environment Protection and Biodiversity Conservation Act 1999*) or WC Act (*Wildlife Conservation Act 1950*) listed Threatened flora were recorded in the study area.

Six Priority taxa were recorded in the study area during both phases of surveying:

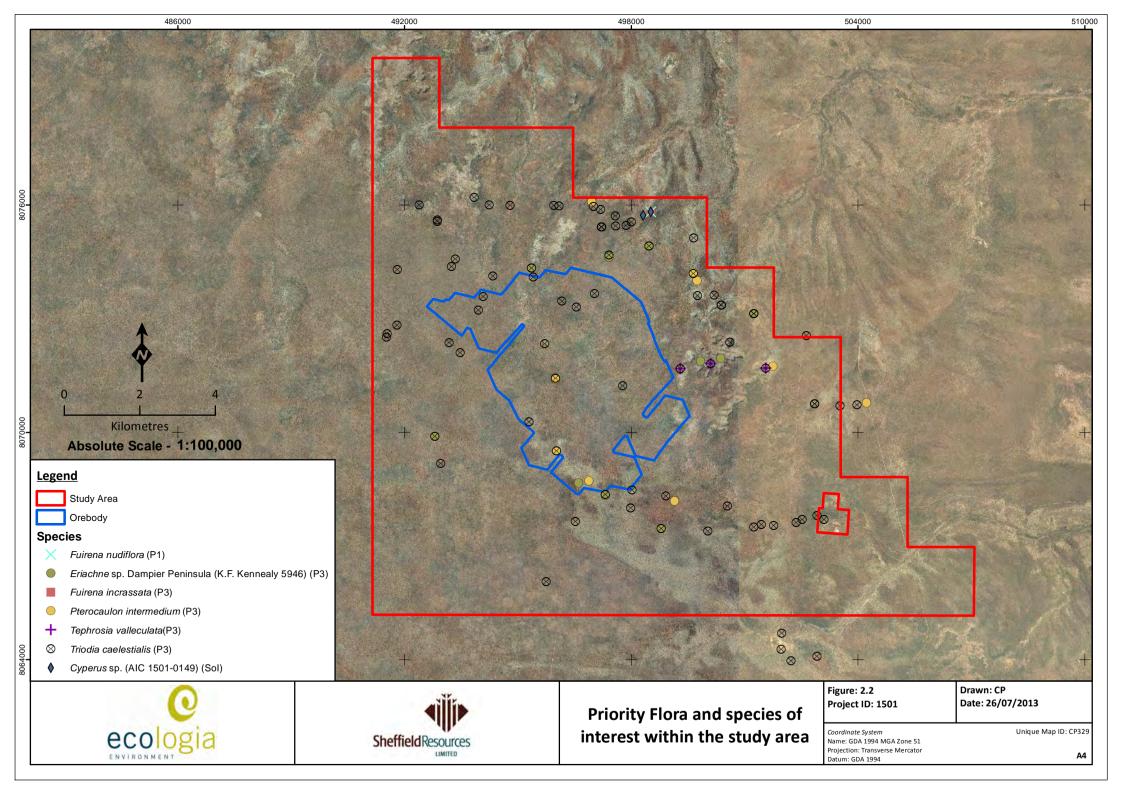
- Fuirena nudiflora (P1);
- Eriachne sp. Dampier Peninsula (K.F.Kenneally 5946) (P3);
- Fuirena incrassata (P3);
- Pterocaulon intermedium (P3);
- Tephrosia valleculata (P3); and
- Triodia caelestialis (P3).

Further details of Priority Flora collected are summarised in Table 2.3. The distribution of records within the study area is illustrated in Figure 2.2 and coordinates of records are provided in Appendix C, with an explanation of the conservation codes in Appendix D.

The Priority 1 taxon, *Fuirena nudiflora* was recorded from a single location within the study area. It also represents the only location on the Dampier Peninsula, 600 km from the next nearest location as per the WA herbarium records (Western Australian Herbarium 1998-2013).

Table 2.3 – Priority Flora recorded within the Thunderbird study area

Conservation Status	Taxon, Family and Description	No. of localities (individuals) within study area	Habitat (WA Herbarium 2013)	Distribution	Flower Period	Photograph (<i>ecologia</i> 2013)
P1	Fuirena nudiflora	1 (30)	Sandy swamps, creek beds	Ngaanyatjarraku, Wyndham-East Kimberley	Apr – May or July	
P3	Eriachne sp. Dampier Peninsula (K.F.Kenneally 5946)	12 (140)	Plain. Red-brown sandy loam. Pindan Sands	Scattered on Dampierland and in the Fitzroy Trough	-	


Conservation Status	Taxon, Family and Description	No. of localities (individuals) within study area	Habitat (WA Herbarium 2013)	Distribution	Flower Period	Photograph (<i>ecologia</i> 2013)
P3	Fuirena incrassata	1 (30)	Sand or sandy clay. Swamps, creek beds, claypans and semi- saline lakes	Broome, East Pilbara, Wyndham-East Kimberley.	May - Aug	
P3	Pterocaulon intermedium	9 (75)	Flat areas on red sand - loam	Broome, Derby-West Kimberley, Port Hedland, Wyndham- East Kimberley	-	

Conservation Status	Taxon, Family and Description	No. of localities (individuals) within study area	Habitat (WA Herbarium 2013)	Distribution	Flower Period	Photograph (<i>ecologia</i> 2013)
P3	Tephrosia valleculata	3 (45)	Sandy, often shallow, soil around sandstone and rock outcrops	Broome, Wyndham- East Kimberley	Apr - Sept	
P3	Triodia caelestialis	79 (11320)	Red-brown sand-silt- clay on low plains	Broome, Derby-West Kimberley.	-	

N/A

2.1.4 Introduced flora

No Weeds of National Significance were recorded in the study area.

Data from the Western Australian Herbarium's database (Western Australian Herbarium 1998-2013) indicates that as at July 2013 there are 165 introduced species within the Dampierland bioregion. Of these, seven species have been recorded within the study area. These species and their legal status under the Western Australian Organism List (WAOL) (DAFWA 2013) are presented in Table 2.4. Of these species, *Sida acuta* is rated as a declared pest on the WAOL (DAFWA 2013) (Table 2.4). This means that this species is prohibited from being imported or kept by any person. The C3 management category means that it is desirable to manage this species in order to limit its damage. Control measures are recommended and can prevent this pest from increasing in population size or density, or moving from an area in which it is established into an area which currently is free of that pest (DAFWA 2013).

The locations at which these species were recorded are listed in Appendix E and mapped in Figure 2.3. The characteristics and broad distributions of these species are summarised in Table 2.5 and Table 2.6.

rable 211 minoduced species recorded in the study area					
Taxon	Legal status (DAFWA 2013)	Control Categories			
*Cynodon dactylon	Permitted (s11)	N/A			
*Digitaria ciliaris	Permitted (s11)	N/A			
*Echinochloa colona	Permitted (s11)	N/A			
*Sida acuta	Declared Pest (s22)	C3 Management			
*Stylosanthes hamata	Permitted (s11)	N/A			
*Stylosanthes scabra	Permitted (s11)	N/A			

Permitted (s11)

Table 2.4 – Introduced species recorded in the study area

^{*}Tridax procumbens

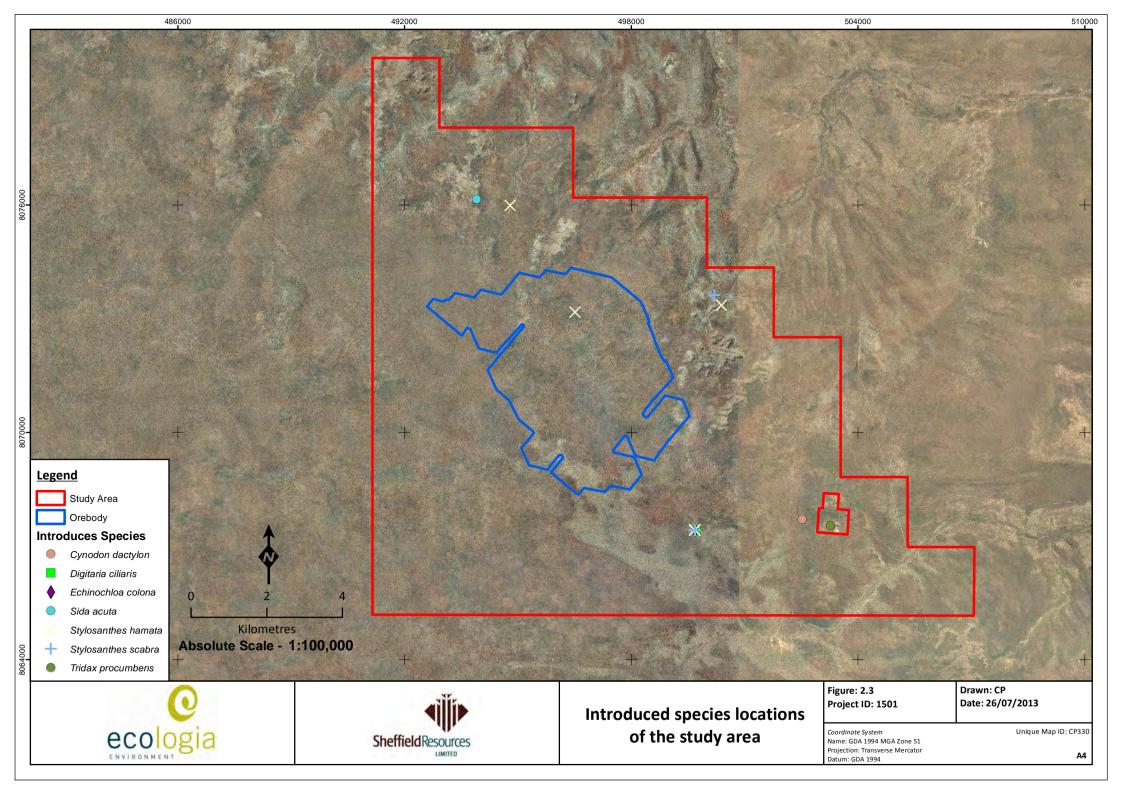
* Introduced species.

Table 2.5 – Environmental status of introduced species recorded in the study area

	DEC Environmental Threat Assessment within the Kimberley (Department of Environment and Conservation 2012)							Number of
Таха	Current Distribution	Abundance	Ecological Impact	Invasiveness	Feasibility of Control	General Trend	Status	Observations in Study Area
Cynodon dactylon	-	-	-	-	-	-	-	1
Digitaria ciliaris	Moderate	Occasional	Low	Unknown	Low	Increasing	Established	1
Echinochloa colona	High	Occasional	Unknown	Rapid	Low	Unknown	Established	1
Sida acuta	Moderate	Common	Unknown	Moderate	Low	Increasing	Established	1
Stylosanthes hamata	Extensive	Common	Moderate	Rapid	Low	Increasing	Established	5
Stylosanthes scabra	Extensive	Common	Moderate	Rapid	Low	Increasing	Established	3
Tridax procumbens	Low	Common	Unknown	Slow	Low	Increasing	Established	1

Table 2.6 – Introduced flora recorded in the study area

Таха	Description	Photograph
Cynodon dactylon Poaceae (Couch grass)	Cynodon dactylon is a rhizomatous or stoliniferous prostrate perennial, 5 to 30 cm high (Western Australian Herbarium 1998-2013). It invades wetlands and river edges and has been found in virtually all parts of Western Australia (Hussey et al. 2007). Native to the Kimberley and the tropics worldwide (Hussey et al. 2007).	Cynodon dactylon WAHERB (2013)
Digitaria ciliaris Poaceae (Summer Grass)	Digitaria ciliaris is a decumbent, tufted annual, grass-like or herb, 0.02–1 m high with green flowers, occurring between November and June (Western Australian Herbarium 1998-2013). It commonly grows in sand, clay, alluvium and sandstone (Western Australian Herbarium 1998-2013). Native to the tropics, D. ciliaris is now a weed of crops and disturbed areas (Hussey et al. 2007).	www.shirleydenton.com
Echinochloa colona Poaceae (Awnless Barnyard Grass)	Echinochloa colona is a tufted annual, grass-like or herb, 0.2–0.6 m high. Flowers are green or purple, occurring between February and July (Western Australian Herbarium 1998-2013). It commonly grows in black sand or black clay, near watercourses and swamps (Western Australian Herbarium 1998-2013) and is a widespread weed of creeks and irrigated crops (Hussey et al. 2007). Native to Africa and Asia (Hussey et al. 2007).	Echinochloa colona Photos: S.M. Armstrong & J. English WAHERB (2013)
Sida acuta Malvaceae (Spinyhead sida)	Sida acuta is a slender, erect perennial, herb or shrub growing to 1 m high. From March to September it possesses a yellow flower (Western Australian Herbarium 1998-2013). Sida acuta is a common weed throughout the Kimberley, preferring to grow in creeks and riverine vine thickets (Hussey et al. 2007). This is a pantropical species that is native to tropical America and Africa (Hussey et al. 2007).	Sida acuta Photos: Anon. WAHERB (2013)



Таха	Description	Photograph
Stylosanthes hamata Fabaceae (Verano Stylo)	Stylosanthes hamata is an erect or decumbent herb or shrub up to 70 cm high with yellow flowers (Western Australian Herbarium 1998-2013). It can be found in seepage areas, creek banks, pool edges, lawn and disturbed vegetation (Western Australian Herbarium 1998-2013). Native to Central and South America (Hussey et al. 2007).	Stylosanthes hamata Photos: G. Byrne WAHERB (2013)
Stylosanthes scabra Fabaceae (Stylo)	Stylosanthes scabra is an erect shrub ranging from 0.3 to 2 metres in height with yellow flowers (Western Australian Herbarium 1998-2013). It can be observed in levees adjacent to major rivers, flood prove areas, well-watered cultivated grounds and road verges (Western Australian Herbarium 1998-2013). Native to the Caribbean and South America (Hussey et al. 2007).	www.hear.org (2013)
Tridax procumbens Fabaceae (Coat buttons)	Tridax procumbens is a prostrate to erect perennial herb, growing to 0.4 m high. It possesses a white and yellow flower from Jan to Dec (Western Australian Herbarium 1998-2013). It can be found in seepage areas, on wet and disturbed ground (Western Australian Herbarium 1998-2013). Native to Central America (Hussey et al. 2007).	No Image

2.1.5 Flora representing range extensions

Twenty six records from the surveys represent range extensions of more than 100 km to the taxon's previously known distribution (Table 2.7), based on current records on Florabase (Western Australian Herbarium 1998-2013) and on the Australian Virtual Herbarium (The Council of Heads of Australasian Herbaria 2013). In some instances, range extensions can represent poorly collected taxa particularly given the relative paucity of records due to the lack of survey effort on the Dampier Peninsula. The paucity of records in the area is evident in that 221 species recorded from both phases (77%) have not previously been recorded within 40 km of the study area. Specimens from these taxa will be lodged with the Western Australian Herbarium.

There are taxa that are relatively well recorded and unlikely to be exhibiting a range extension due to paucity of records, and therefore expected to actually represent significant range extensions, these species being: Alysicarpus muelleri, Cenchrus elymoides, Fimbristylis simulans, Lophostemon grandiflorus subsp. riparius, Polygala galeocephala, Pterocaulon tricholobum and Stemodia lythrifolia.

Table 2.7 - Taxa with range extensions greater than 100 km

Species	Approximate distance and direction of extension	Bioregions in which species is known to occur	Number of records on WAHERB (2013)
Acacia drepanocarpa subsp. latifolia	128 km NW of south eastern record	CK, DL, GSD, OVP, PIL	19
Alysicarpus muelleri	188 km W of Northern Kimberley population	CK, CAR, DL, NK, OVP, PIL, TAN, VB	84
Aphyllodium biarticulatum	500 km SW of Northern Kimberley population	NK, VB	6
Cenchrus elymoides	120 km SW of known population	CK, NK, VB	59
Cenchrus elymoides var. elymoides	115 km SW of Northern Kimberley population	CK, NK	18
Cheilanthes ?nudiuscula	265 km WSW of Northern Kimberley population	CK, NK, OVP	3
Cyperus latzii	111 km S of Kimberley population	CK, DL, NK, VB	5
Fimbristylis macrantha	400 km SW nearest record	NK, VB	3
Fimbristylis simulans	118 km NW of known Northern Province records	CK, DL,NK,OVP, PIL, TAN	30
Fimbristylis trigastrocarya	154 km S of known population	NK, VB	13
Fuirena nudiflora (P1)	635 km W of known Kimberley population	CR, VB	2
Gomphrena lanata	135 km NW of western population	DL, GSD, OVP, PL, SKI	23
Heliotropium dichotomum	135 km W of eastern population	DL NK OVP VP	13
Lophostemon grandiflorus subsp. riparius	110 km W of known population	CK, DL, NK, OVP, VB	81
Polygala galeocephala	100 km W of known population	CK, DL, GSD, NK, OVP, TAN, VB	37
Pterocaulon tricholobum	112 km SSW of known population	CK, DL, NK, OVP, VB	43
Rotala occultiflora	200km WSW of known population	CK, CR, DL, NK, OVP, VB	27
Sida acuta	112 km SSW of known population	CK, DL, OVP, P, VP	26
Stemodia lythrifolia	653 km SW of known records	CK, DL, NK, OVP, VB	46
Tephrosia forrestiana	417 km W of known population	CK, OVP, VB	9
Tephrosia valleculata	115 km SSW of known population	DL, NK	9
Thaumastochloa pubescens	100 km E of known population	DL	2
Tribulopis pentandra	100 km W of known population	CK, DL, NK, OVP, VB	24

Species	Approximate distance and direction of extension	Bioregions in which species is known to occur	Number of records on WAHERB (2013)
Trichodesma zeylanicum var. zeylanicum	Bridging extension 192 km W of eastern population and 523 km NE of Pilbara population	CAR, CK, DL, GAS, GD, GVD, LSD, NK, OVP, PIL, YAL	28
Triodia caelestialis	197 km W of known population	CK, DL, NK	3
Triodia intermedia	152 km W of eastern population and 220 km NE of south-western record	CK, DL, GAS, GSD, OVP, PIL	26

Bioregion codes:

Northern: Central Kimberley (CK), Dampierland (DL), Northern Kimberley (NK), Ord-Victoria Plains (OVP) and Victoria Bonaparte (VB).

Eremaean: Carnarvon (CAR), Central Ranges (CR), Coolgardie (COO), Gascoyne (GAS), Gibson Desert (GD), Great Sandy Desert (GSD), Great Victoria Desert (GVD), Hampton (HAM), Little Sandy Desert (LSD), Murchison (MUR), Nullarbor (NUL) Pilbara (PIL), Tanami (TAN) and Yalgoo (YAL). South-west: Avon Wheatbelt (AW), Esperance Plains (ESP), Geraldton Sandplains (GS), Jarrah Forest (JF), Mallee (MAL), Swan Coastal Plain (SWA), Warren (WAR).

2.1.6 Species of Interest

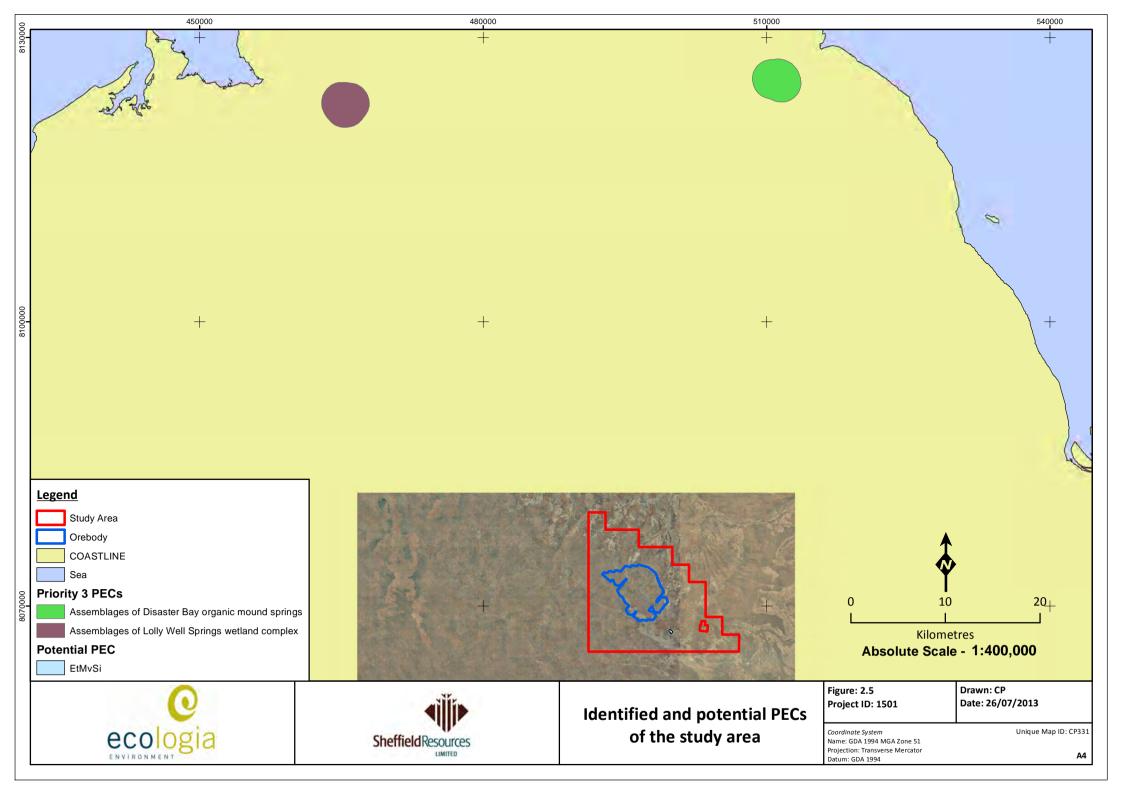
Cyperus sp. (AIC 1501-0149) is a tall grey-green to green, apparently non-rhizomatous, perennial sedge to ca. 50 cm high (Figure 2.4). This specimen was unable to be assigned to a known species due to its unusual inflorescence, glume structure and fully formed nuts and with anthers that are apparently absent (M. Hislop, pers. comm.); it is awaiting further examination by Cyperus specialists. This potentially new taxon was collected at two sites in the north of the study area (Figure 2.2), occurring on dark sandy-loam soils together with species including Acacia tumida var. tumida, Acacia platycarpa, Melaleuca alsophila, Crotalaria crispata, Sorghum timorense and Triodia caelestialis.

Figure 2.4 – *Cyperus* sp. (AIC 1501-0149)

2.2 VEGETATION

2.2.1 Priority Ecological Communities (PECs)

Two Priority 3 PECs are recorded within 50 km of the study area, both located approximately 40 km north east of the study area (Figure 2.5). These PECs are:


- Assemblages of Disaster Bay organic mound springs; and
- Assemblages of Lolly Well Springs wetland complex.

Assemblages of Disaster Bay organic mound springs (P3) are found on a tidal flat with *Melaleuca acacioides, Timonius timon, Pandanus spiralis, Melaleuca viridiflora, Acacia neurocarpa* and *Lumnitzera racemosa* (mangrove) woodland with *Typha domingensis* and sedges, including *Schoenoplectus litoralis*. Threats to this PEC include soil compaction by cattle and potential changes in sea level due to climate change (Department of Environment and Conservation 2013).

Assemblages of Lolly Well Springs wetland complex (P3) contain numerous low organic mound springs with moats. *Melaleuca cajuputi* and/or *Timonius timon*, and *Eleocharis dulcis* are indicative of these types of wetlands. Threats to this PEC include recreational use, potential tourism developments, weed invasion, rubbish dumping, grazing and trampling (cattle) (Department of Environment and Conservation 2013).

Vegetation unit EtMvSi (*Eucalyptus tectific*a and *Melaleuca viridiflora* open woodland, over dense tussock grassland) mapped in the first phase shows similarities with the Lolly Well Springs wetland complex Priority 3 PEC assemblage (Figure 2.5). This comparison can be made because the landform of this vegetation unit also presents an area of what can be described as a low, large organic mound spring with moats. The presence of *Melaleuca viridiflora* and Cyperaceae species also present in the Lolly Well Springs wetland complex incicate that this vegetation unit may constitute a potential PEC.

2.3 FAUNA

2.3.1 Conservation significant fauna recorded within the Thunderbird study area

During the first phase of the survey, four vertebrate species of conservation significance were recorded, all of them birds. These were the Australian Bustard (*Ardeotis australis*; WC Act Priority 4), Bush Stone-curlew (*Burhinus grallarius*; WC Act Priority 4), Fork-tailed Swift (*Apus pacificus*; EPBC Act Migratory, WC Act Schedule 3) and Rainbow Bee-eater (*Merops ornatus*; EPBC Act Migratory, WC Act Schedule 3). The details of these records are shown in Table 2.8 and Figure 2.6 below.

Table 2.8 – Conservation significant fauna recorded during the survey

	Number		Location				
Species	recorded	Site	Easting	Northing			
Australian Bustard	2	Opportunistic	493689	8073231			
(Ardeotis australis)	_			33.3202			
Australian Bustard	1	Opportunistic	495867	8063689			
(Ardeotis australis)	_	Оррогинзис	.55507	000000			
Australian Bustard	1	Opportunistic	498080	8073444			
(Ardeotis australis)	-	Оррогилизис	150000	0073111			
Australian Bustard	1	Opportunistic	501623	8073615			
(Ardeotis australis)	-	Opportunistic	301023	0075015			
Australian Bustard	1	Opportunistic	503137	8073511			
(Ardeotis australis)	-	Opportunistic	303137	0073311			
Australian Bustard	1	On a surturnistic	498858	8073480			
(Ardeotis australis)	1	Opportunistic	430030	8073480			
Australian Bustard	2		497167	9072401			
(Ardeotis australis)	2	Opportunistic	49/10/	8073401			
Australian Bustard	1		499925	0072522			
(Ardeotis australis)	1	Opportunistic	499925	8073532			
Australian Bustard	4		400000	8073487			
(Ardeotis australis)	1	Opportunistic	498892				
Bush Stone-curlew	4	4		0067075			
(Burhinus grallarius)	1	Opportunistic	504998	8067975			
Fork-tailed Swift	2		F02460	0067440			
(Apus pacificus)	2	Opportunistic	503460	8067419			
Rainbow Bee-eater	2		400504	0070400			
(Merops ornatus)	3	TBS1	499584	8073492			
Rainbow Bee-eater			1000=0	00=0010			
(Merops ornatus)	3	TBS3	493352	8073219			
Rainbow Bee-eater			404050	0070444			
(Merops ornatus)	2	TBS4	491858	8073144			
Rainbow Bee-eater			400005	0074200			
(Merops ornatus)	9	TBS5	496965	8071200			
Rainbow Bee-eater	10		10.5500	2222-11			
(Merops ornatus)	13	TBS6	496603	8068741			
Rainbow Bee-eater			405225	0000110			
(Merops ornatus)	3	TBS7	496226	8066143			
Rainbow Bee-eater	_		107=:-	0005::::			
(Merops ornatus)	2	Opportunistic	499712	8067404			
Rainbow Bee-eater							
(Merops ornatus)	10	Opportunistic	504152	8072770			

Zone: 51K Datum: GDA 94

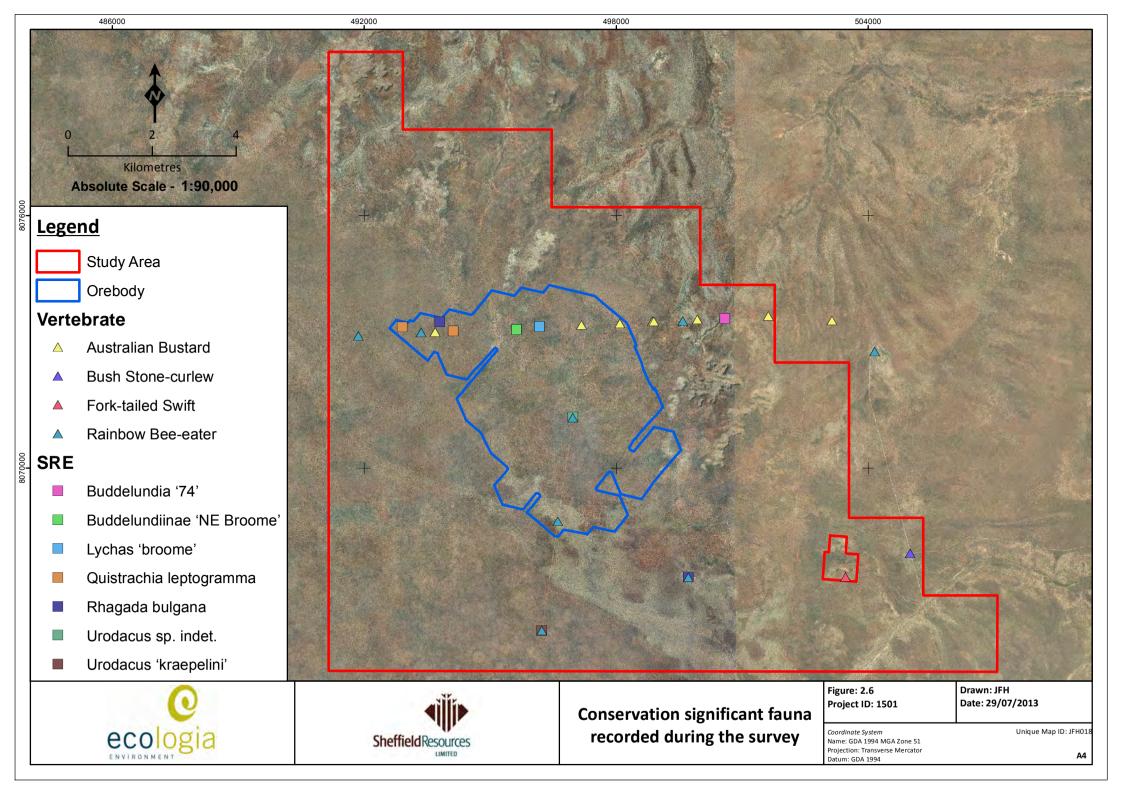
A desktop study of conservation significant invertebrate fauna potentially found within the Thunderbird study area produced few records due to the paucity of prior survey effort in the area. Searches of the Department of Parks and Wildlife (DPaW) and Western Australian Museum (WAM) databases detected five terrestrial snails that are either confirmed SREs or potential SREs that could occur within the study area (Table 2.9).

Table 2.9 – Potential SRE fauna relevant to the Thunderbird study area

Species	SRE status		
Rhagada bulgana	SRE (Confirmed)		
Quistrachia leptogramma	SRE (Confirmed); distribution nearing 10000km2		
Quistrachia sp.	Unidentified species; Potential SRE (taxonomically poorly resolved)		
Rhagada sp.	Unidentified species; Potential SRE (taxonomically poorly resolved)		
Magilaoma sp. nov.	Probable new species; Potential SRE (taxonomically poorly resolved)		

To date, only the taxonomic results for snails, scorpions and isopods have been returned to *ecologia* from WAM. The snail report states that of the four species identified, one (*Rhagada bulgana*) is a confirmed SRE, another (*Quistrachia leptogramma*) is a potential SRE, whilst the remaining two (*Eremopeas interioris* and *Pupoides pacificus*) are widespread species and therefore are not SREs (Whisson 2013). The combined scorpion and isopod report states that three of the five scorpions identified are potential SREs, as are both of the isopods (Framenau 2013). Details of these confirmed and potential SREs are shown in Table 2.10 below.

Table 2.10 – SRE specimens recorded during the survey


Taxon	SRE status	Number	Easting	Northing	WAM Reg. No.	ecologia ref.
CAMAENIDAE						
Rhagada bulgana	Confirmed	1	8073471	493791	81704	1501;13:2742
Rhagada bulgana	Confirmed	1	8067404	499712	81705	1501;13:2739
Quistrachia leptogramma	Potential (A,E)*	1	8073259	494110	81702	1501;13:2788
Quistrachia leptogramma	Potential (A,E)*	6	8073259	494110	81702	1501;13:2741
Quistrachia leptogramma	Potential (A,E)*	1	8073352	492897	81703	1501;13:2742
SCORPIONES						
Lychas 'broome'	Potential (A,E)*	1	8073359	496173	Pending	1501,13:2744
Lychas 'broome'	Potential (A,E)*	3	8073359	496173	Pending	1501,13:2757
Urodacus 'kraepelini'	Potential (A,E)*	1	8066143	496226	Pending	1501,13:2740
Urodacus sp. indet.	Potential (A,E)*	1	8073290	495622	Pending	1501,13:1304
Urodacus sp. indet.	Potential (A,E)*	1	8071200	496965	Pending	1501,13:2749
ISOPODA						
Buddelundia '74'	Potential (A,E)*	9	8073560	500580	Pending	1501,13:2772
Buddelundia '74'	Potential (A,E)*	7	8073560	500580	Pending	1501,13:2773
Buddelundiinae 'NE Broome'	Potential (A,E)*	4	8073290	495622	Pending	1501,13:2774
Buddelundiinae 'NE Broome'	Potential (A,E)*	1	8073290	495622	Pending	1501,13:2775

Zone: 51K Datum: GDA 94

*Details of these codes are provided in Appendix D

2.3.2 Fauna representing range extensions

One of the species recorded during the survey may represent a range extension. The nearest NatureMap (a database maintained by DPaW) record for the gecko, *Gehyra nana* is approximately 100 km away. However, two other surveys have previously recorded this species on the Dampier Peninsula (*ecologia* 2004c; ENV 2008). This disparity is likely due to the low frequency in which the NatureMap database is updated, as well as the paucity of survey data in the region.

Although it may not represent a range extension, the record of the skink *Lerista greeri* is notable in that it has only been recorded on the Dampier Peninsula once before (ENV 2008), and the nearest NatureMap record is around 60 km away. Similarly, the record of the Lesser Hairy-footed Dunnart (*Sminthopsis youngsoni*) is also noteworthy since there is only one prior NatureMap record and one *ecologia* (2004c) record of this species on the Dampier Peninsula.

As suspected by WAM experts, the record of the snail *Rhagada bulgana* has been identified as a range extension (Slack-Smith and Whisson 2011). Current distribution records for this species are limited to the area between Quondong Point and the northern tip of the Dampier Peninsula. In addition, molecular taxonomy suggests that the species is synonymous with *R. cygna* in the north and *R. reigna* in the south of the peninsula (Johnson *et al.* 2004). Similarly, *Quistrachia leptogramma* has been found from Broome northwards to Cape Leveque, and other scattered records of it are known (Slack-Smith and Whisson 2011).

2.3.3 Other conservation significant fauna

Based upon consultation with staff at the WAM during the survey, specimens of three vertebrate species were vouchered. This included a specimen of the Short-tailed Monitor (*Varanus* affin. *brevicauda*), which may in future be split into a new species in the Kimberley region. Also submitted were two specimens of the skinks *Morethia storri*, and one of *Ctenotus colletti*. Two specimens of a third skink, tentatively identified as *Proablepharus tenuis*, were also submitted. *ecologia* is currently awaiting taxonomic reports from WAM regarding these reptiles, as well as for the mygalomorph, opilionid, pseudoscorpion and selenopid invertebrate specimens which have been submitted.

August 2013 23

ecologia

2.3.4 Species recorded

During the survey, 124 terrestrial vertebrate species were recorded. This included 13 mammal (including three introduced), 73 bird, 31 reptile and seven amphibian species, shown in Table 2.3 below.

Table 2.11 - Vertebrate species recorded during the survey

Taxon	Common name
Mammals	
DASYURIDAE	
Sminthopsis youngsoni	Lesser Hairy-footed Dunnart
MACROPODIDAE	
Macropus agilis	Agile Wallaby
VESPERTILIONIDAE	
Chalinolobus gouldii	Gould's Wattled Bat
Chalinolobus nigrogriseus	Hoary Wattled Bat
Myotis macropus	Large-footed Myotis
Nyctophilus geoffroyi	Lesser Long-eared Bat
Scotorepens greyii	Little Broad-nosed Bat
MOLOSSIDAE	
Chaerophon jobensis	Northern Freetail Bat
MURIDAE	
Pseudomys delicatulus	Delicate Mouse
Pseudomys nanus	Western Chestnut Mouse
INTRODUCED MAMMALS	
*Canis lupus	Dog/Dingo
*Felis catus	Cat
*Bos taurus	Cow
Birds	
PHASIANIDAE	
Coturnix ypsilophora	Brown Quail
ANSERANATIDAE	
Anseranas semipalmata	Magpie Goose
ANATIDAE	
Dendrocygna eytoni	Plumed Whistling-Duck
Anas superciliosa	Pacific Black Duck
PODICIPEDIDAE	
Tachybaptus novaehollandiae	Australasian Grebe
COLUMBIDAE	
Ocyphaps lophotes	Crested Pigeon
Geopelia cuneata	Diamond Dove
Geopelia striata	Peaceful Dove
PODARGIDAE	

Taxon	Common name
Podargus strigoides	Tawny Frogmouth
EUROSTOPODIDAE	
Eurostopodus argus	Spotted Nightjar
AEGOTHELIDAE	
Aegotheles cristatus	Australian Owlet-nightjar
APODIDAE	
Apus pacificus	Fork-tailed Swift
ARDEIDAE	
Ardea pacifica	White-necked Heron
THRESKIORNITHIDAE	
Threskiornis spinicollis	Straw-necked Ibis
ACCIPITRIDAE	
Milvus migrans	Black Kite
Accipiter fasciatus	Brown Goshawk
Accipiter cirrocephalus	Collared Sparrowhawk
Circus assimilis	Spotted Harrier
Aquila audax	Wedge-tailed Eagle
FALCONIDAE	
Falco cenchroides	Nankeen Kestrel
Falco berigora	Brown Falcon
OTIDIDAE	
Ardeotis australis	Australian Bustard
BURHINIDAE	
Burhinus grallarius	Bush Stone-curlew
TURNICIDAE	
Turnix pyrrhothorax	Red-chested Button-quail
Turnix velox	Little Button-quail
CACATUIDAE	
Eolophus roseicapillus	Galah
Nymphicus hollandicus	Cockatiel
PSITTACIDAE	
Trichoglossus haematodus rubritorquis	Red-collared Lorikeet
Aprosmictus erythropterus	Red-winged Parrot
Melopsittacus undulatus	Budgerigar
CUCULIDAE	
Centropus phasianinus	Pheasant Coucal
Chalcites basalis	Horsfield's Bronze-Cuckoo
STRIGIDAE	
Ninox novaeseelandiae	Southern Boobook
HALCYONIDAE	

Taxon	Common name
Todiramphus pyrrhopygius	Red-backed Kingfisher
Todiramphus sanctus	Sacred Kingfisher
MEROPIDAE	
Merops ornatus	Rainbow Bee-eater
CORACIIDAE	
Eurystomus orientalis	Dollarbird
CLIMACTERIDAE	
Climacteris melanura	Black-tailed Treecreeper
MALURIDAE	
Malurus melanocephalus	Red-backed Fairy-wren
ACANTHIZIDAE	
Smicrornis brevirostris	Weebill
Gerygone albogularis	White-throated Gerygone
PARDALOTIDAE	
Pardalotus rubricatus	Red-browed Pardalote
Pardalotus striatus	Striated Pardalote
MELIPHAGIDAE	
Lichenostomus virescens	Singing Honeyeater
Lichenostomus flavescens	Yellow-tinted Honeyeater
Conopophila rufogularis	Rufous-throated Honeyeater
Sugomel niger	Black Honeyeater
Lichmera indistincta	Brown Honeyeater
Melithreptus gularis	Black-chinned Honeyeater
Melithreptus albogularis	White-throated Honeyeater
Philemon citreogularis	Little Friarbird
POMATOSTOMIDAE	
Pomatostomus temporalis	Grey-crowned Babbler
NEOSITTIDAE	
Daphoenositta chrysoptera	Varied Sittella
CAMPEPHAGIDAE	
Coracina novaehollandiae	Black-faced Cuckoo-shrike
Lalage sueurii	White-winged Triller
PACHYCEPHALIDAE	
Pachycephala rufiventris	Rufous Whistler
Colluricincla harmonica	Grey Shrike-thrush
ARTAMIDAE	
Artamus personatus	Masked Woodswallow
Artamus cinereus	Black-faced Woodswallow
Artamus minor	Little Woodswallow
Cracticus nigrogularis	Pied Butcherbird
RHIPIDURIDAE	

Taxon	Common name
Rhipidura leucophrys	Willie Wagtail
CORVIDAE	
Corvus orru	Torresian Crow
MONARCHIDAE	
Myiagra nana	Paperbarck Flycatcher
Grallina cyanoleuca	Magpie-lark
PETROICIDAE	
Microeca fascinans	Jacky Winter
Melanodryas cucullata	Hooded Robin
MEGALURIDAE	
Cincloramphus mathewsi	Rufous Songlark
HIRUNDINIDAE	
Petrochelidon nigricans	Tree Martin
NECTARINIIDAE	
Dicaeum hirundinaceum	Mistletoebird
ESTRILDIDAE	
Taeniopygia guttata	Zebra Finch
Poephila acuticauda	Long-tailed Finch
Reptiles	
AGAMIDAE	
Chlamydosaurus kingii	Frill-necked Lizard
Diporiphora magna	
Diporiphora pindan	
Pogona minor	Dwarf Bearded Dragon
DIPLODACTYLIDAE	
Diplodactylus conspicillatus	Fat-tailed Gecko
Lucasium stenodactylum	
Strophurus ciliaris	
GEKKONIDAE	
Gehyra nana	
Gehyra pilbara	
Heteronotia binoei	Bynoe's Gecko
PYGOPODIDAE	
Delma tincta	
Lialis burtonis	
SCINCIDAE	
Carlia munda	
Carlia rufilatus	
Ctenotus colletti	
Ctenotus inornatus	

Taxon	Common name
Ctenotus pantherinus	
Ctenotus robustus	
Ctenotus serventyi	
Eremiascincus isolepis	
Lerista greeri	
Morethia storri	
Proablepharus tenuis	
Tiliqua scincoides	Eastern Blue-tongue
VARANIDAE	
Varanus acanthurus	Spiny-tailed Monitor
Varanus brevicauda	Short-tailed Pygmy Monitor
Varanus tristis tristis	Racehorse Monitor
BOIDAE	
Antaresia stimsoni	Stimson's Python
ELAPIDAE	
Brachyurophis roperi	
Demansia angusticeps	
Suta punctata	Spotted Snake
Amphibians	
HYLIDAE	
Cyclorana australis	Giant Frog
Cyclorana longipes	Long-footed Frog
Litoria caerulea	Green Tree Frog
Litoria rubella	Little Red Tree Frog
LIMNODYNASTIDAE	
Notaden nichollsi	Desert Spadefoot
Platyplectrum ornatum	Ornate Burrowing Frog
MYOBATRACHIDAE	
Uperoleia talpa	Mole Toadlet

^{*}Introduced species

A total of 124 invertebrate fauna were recorded including 22 isopods, nine mygalomorphs, four opilionids (harvestmen), 15 pseudoscorpions, 58 scorpions and 16 snails. Taxonomic information for the mygalomorph, opilionid, selenopid and pseudoscorpion samples are pending relevant identification reports from WAM.

August 2013 28 ecologia

3 DISCUSSION

3.1 FLORA

3.1.1 Regional distribution of conservation significant flora

The conservation significance of Threatened and Priority Flora is greater if the taxa is poorly recorded or restricted to a particular area or region. The table below summarises the distribution of the Priority flora recorded within the study area in Western Australia, according to specimens lodged at the Western Australian Herbarium (Western Australian Herbarium 1998-2013).

Eriachne sp. Dampier Peninsula (K.F.Kenneally 5946) (P3), is relatively well represented in the Herbarium's database with 22 records distributed regionally outside of the study area. However, records suggest that this species is entirely restricted to the Dampierland bioregion.

Fuirena incrassata (P3), Pterocaulon intermedium (P3), Tephrosia valleculate (P3) and Triodia caelestialis (P3) are less well represented within the Herbarium's database with seven, 17, nine and 16 regional records each, respectively. However, these species have a wide distribution throughout northern Australia.

Fuirena nudiflora (P1) has two populations recorded in the Herbarium's database from the Central Ranges and Victoria Bonaparte bioregions. The specimen collected during the current survey represents the first record in the Dampierland bioregion increasing the significance of the presence of this species in the study area.

All Priority flora recorded in the study area are poorly represented within conservation reserves managed by DPaW (formerly DEC). *Eriachne* sp. Dampier Peninsula (K.F.Kenneally 5946), *Pterocaulon intermedium* and *Triodia caelestialis* are the only species known to be represented within the conservation estate, by a single record each. The remainder of the species recorded during the survey are not known to be present within a conservation reserve.

No. of Locations Locations in **Priority** Locations within the Taxon within the Study Florabase Status **Conservation Estate** (WAHerb) Area 0 2 P1 1 Fuirena nudiflora Eriachne sp. Dampier Peninsula Р3 12 1 22 (K.F.Kenneally 5946) Р3 Fuirena incrassata 1 0 7 9 1 17 P3 Pterocaulon intermedium 3 0 9 Р3 Tephrosia valleculata

Table 3.1 - Distribution of Priority Flora recorded in the study area within Western Australia

3.1.2 Comparison with nearby surveys

Triodia caelestialis

Р3

Results from the current survey were compared to six surveys within 100 km of the study area, as discussed below.

79

1

Biota Environmental Services (Biota) conducted two phases of the James Price Point, Browse LNG Vegetation Monitoring Program – Phase 1 and 2 Surveys (Biota 2011a, b), approximately 60 km north north-east of Broome in 2011. Four taxa of conservation significance were recorded during this survey; *Gomphrena pusilla* (P2), *Eriachne* sp. Dampier Peninsula (K.F. Kennealy 5946) (P3), *Lophostemon grandiflorus* subsp. *grandiflorus* (P3) and *Pittosporum moluccanum* (P4).

August 2013 29

16

In 2011, ecologia conducted a flora and vegetation survey titled 'James Price Point: Light Industrial Area, Workers' Accommodation and Southern Pipeline Sites Vegetation and Flora Survey'. The survey, conducted approximately 60 km north north-east of Broome, (ecologia 2011a) identified two Priority Flora taxa; Eriachne sp. Dampier Peninsula (K.F. Kennealy 5946) (P3) and Pittosporum moluccanum (P4).

Biota conducted a Vegetation and Flora Survey of James Price Point: Wet Season 2009 (Biota 2010b). Four currently listed priority flora species were observed; *Gomphrena pusilla* (P2), *Eriachne semiciliata* (P3), *Polymeria distigma* (P3) and *Pittosporum moluccanum* (P4).

MBS Environmental are conducting a progressive rehabilitation plan of the Ellendale 4 Diamond Project for the Kimberley Diamond Company (MBS 2010) situated *ca* 100 km south south-east of the Thunderbird study area. Six Priority Flora taxa were recorded during this survey; *Goodenia byrnesii, Aphyllodium glossocarpum, Euphorbia stevenii, Goodenia sepalosa* var. *glandulosa* and *Phyllanthus aridus*.

In 2004, ecologia conducted two vegetation and flora surveys of the Beagle Bay Big Tree Country Timber Plantation lease, approximately 48 km north of the study area (ecologia 2004a, b). Six currently listed priority species were recorded within the study areas; Gomphrena pusilla (P2), Nymphoides beaglensis (P2), Aphyllodium glossocarpum (P3), Phyllanthus aridus (P3), Stylidium costulatum (P3) and Triodia acutispicula (P3).

Eriachne sp. Dampier Peninsula (K.F. Kennealy 5946) was the only Priority flora taxa recorded within the Thunderbird study area, as well as in additional regional reports. This species appears to have a wide distribution on the Dampier Peninsula (Table 3.2).

Table 3.2 – Priority Flora present within nearby surveys

Taxon	ecologia (2011)	Biota (2011a)	Biota (2011b)	Ecologia (2011)
Eriachne sp. Dampier Peninsula (K.F. Kennealy 5946) (P3)	3 locations	5 locations	19 locations	12 locations

3.2 VEGETATION

3.2.1 TECs and PECs

No TECs have been identified within the study area. Although no PECs have been identified within the study area, vegetation unit *EtMvSi*, mapped in the first phase is similar in both species composition and landform to the Priority 3 PEC, Assemblages of Lolly Well Springs wetland complex (Figure 2.5). This assemblige is also associated with the ephemeral pool or spring. Vegetation unit *EtMvSi*, is dominated by *Eucalyptus tectifica* and *Melaleuca viridiflora* open woodland, over dense tussock grassland (*Sacciolepis indica*, *Sorghum plumosum* and *Fuirena ciliaris*) and covers 9.39 ha of the study area. *EtMvSi* appears to be localised to and supported by the ephemeral pool. This vegetation unit is highly dependent on the water present around the ephemeral pool and would be highly susceptible to changes in the level of the water table.

If this vegetation unit is subsequently considered to be a PEC, then potential impacts should be minimised or avoided entirely. The impact to the vegetation unit *EtMvSi* from an altered water table if the Thunderbird project is developed could be assessed through a separate hydrological assessment.

3.3 FAUNA

3.3.1 Regional distribution of conservation significant fauna

All four of the conservation significant birds which were recorded (Australian Bustard, Bush Stone-curlew, Fork-tailed Swift and Rainbow Bee-eater) are both abundant and widespread throughout

WA, occurring from the south-west to the Kimberley. There are many NatureMap records of all four species on the Dampier Peninsula, and they have also been recorded there on prior fauna surveys.

The two confirmed/potential SRE snail species found on this survey were previously known mainly from the west coast of the Dampier Peninsula; therefore the range extension represented by these records indicates that their distribution is not limited to these areas and may cover a reasonably large area. The same applies to the two identifiable SRE scorpion species, which were previously only known from the area around Broome (Framenau 2013). The two isopod morphospecies are currently only known from this survey and may represent new species altogether.

3.3.2 Impact on conservation significant fauna

The development of the Thunderbird resource is expected to have a minimal impact on the conservation significant fauna species recorded therein. The spring located near the centre of the study area may be a locally significant water source, but none of the four conservation significant bird species are particularly water-dependent. Habitat analysis completed after the second phase of the survey will enhance understanding of the potential amount of nesting habitat for these species present in the study area. However, since the rest of the habitat within the study area appears to be regionally extensive, it is expected that these four species are capable of avoiding impacts from development works.

Samples of both of the confirmed/potential SRE snail species have previously been collected at James Price Point in habitat similar to that found in the study area. Although SRE fauna are restricted to small home ranges, the habitat found in the study area is widespread across the Dampier Peninsula. This indicates that potentially only a small proportion of their populations inhabit the study area and therefore, any impact on them may only be minimal. However, very little is known about the potential SRE scorpion and isopod species, so at this stage it is difficult to assess the level of impact any future development may have.

3.3.3 Comparison with nearby surveys

A comparison of vertebrate species richness with other surveys conducted on the Dampier Peninsula indicates that the numbers of mammal, bird, reptile and amphibian species recorded is similar if not slightly higher than average. Due to seasonal variation, it is likely that still more species will be recorded during the second phase of the survey, indicating that species richness in the area may be relatively high. However, most of the prior surveys conducted on the Dampier Peninsula were located near the coast; therefore results of comparisons of the various fauna assemblages may not necessarily be entirely compariable and should consider this fact.

The nearest invertebrate regional surveys were located at James Price Point, where a combined total of 31 confirmed or potential SRE species were identified (Biota 2009, 2010a; ecologia 2011b, c). These species were collected from three habitat types (Pindan Shrubland, Open Forest and Monsoon Vine Thicket), and included the two snail species found on this survey (R.bulgana and Q. leptogramma). The Pindan Shrubland and Open Forest habitats are similar to or the same as that found in the study area, indicating that a comparable number of SRE species may be identified pending delivery of the remaining taxonomic reports.

3.3.4 Habitat potentially supporting conservation significant fauna

On-site observation of the habitat in the study area indicates that the area may be at least sporadically inhabited by the Greater Bilby (*Macrotis lagotis*; EPBC Act Vulnerable, WC Act Schedule 1). This is supported by the fact that there are numerous NatureMap records within 50 km, and several old burrows were found in the study area which may be attributed to Bilbies. A full habitat analysis complemented by more information collected during the second phase of the survey will allow an assessment of the likelihood of occurrence of this protected species in the study area.

This page has been left blank intentionally.

3.4 ASSESSMENT OF BIOLOGICAL RESULTS AGAINST PROJECT PATHWAY

The presence of conservation significant flora, fauna and vegetation communities within the vicinity of the Thunderbird Mineral Sands project may affect the design and pathway of the project. Biological factors identified as being of conservation significance and that may have an impact on the project are assessed in Table 3.1.

In addition to addressing species of conservation significance confirmed to be present in the study area during the preceding surveys, the assessment in Table 3.1 is based on four assumptions:

- Cyperus sp. (AIC 1501-0149) is confirmed to be a new species.
- The potential PEC is confirmed to be a new PEC.
- Troglofauna and stygofauna are recorded within the study area.
- Conservation significant fauna with the potential to occur are found to be present.

Assuming that the project is formally assessed by the Environmental Protection Authority (EPA), the likely implications for Sheffield are:

- Further assessment is currently in process for Greater Bilby and Gouldian Finch as part of the Level 2 survey. If suitable habitat is found in the study area for either of these species a referral under the EPBC Act would be required. If deemed to be a controlled action and impacts cannot be avoided or mitigated, offsets may be required. Offsets can include any or all of the following:
 - o Purchase and legal protection of land of equivalent habitat;
 - CALM/DEPaW financial contribution for management or research;
 - Fencing of the protected land;
 - Monitoring of the protected land; and/or
 - o Feral animal control within the protected land.
- Monitoring of conservation significant flora (Priority 1 flora) which may be directly or indirectly impacted by the project.
- Monitoring of the potential PEC which may be directly or indirectly impacted by the project.
- 'Licence to take' to be acquired for any clearing of Priority 3 flora and flora representing range extensions.
- Avoidance and utilisation of buffer zones applied to conservation significant flora and the
 potential PEC. The default direct impact buffer used by DPaW for a Priority Flora species is
 50 m.

Although this project is likely to attract Ministerial conditions that will affect the project and (to some degree) the project schedule, no biological issues identified (Table 3.1) are foreseen to prevent the commencement of the Thunderbird Mineral Sands project.

Table 3.1 – Assessment of biological results against project feasibility

Environmental Factor	Likelihood of Occurrence	Likely action required		Potential effect on project
EPBC listed fauna (Bilby and/or Gouldian Finch)	Based on regional records, Bilby has a high likelihood of occurrence Suitable habitat for the Gouldian Finch is present, but this species has not been recorded close to the impact area	 Targeted survey (currently in process as a component of the Level 2 survey) to assist with determining the likelihood of occurrence within and outside of the impact area An EPBC referral to the Minister of Sustainability, Environment, Water, Population and Communities for the approval of an action that could impact the Bilby and/or Gouldian Finch. Included in the referral is the preparation of a Fauna Management Plan for the Bilby and/or Gouldian Finch, to reduce the likelihood of further assessment 	 Monitoring of the Bilby and/or Gouldian Finch for the duration of time impacting the species Potential offsets package may include funding futher research of the Bilby and/or Gouldian Finch, or purchasing available habitat equivalent to the area and quality of habitat being impacted 	 Financial An approximate cost of \$25,000 to prepare a referral application per EPBC listed species, if required Additional costs in preparing a Fauna Management Plan for the Bilby and/or Gouldian Finch Cost involved in (annual) monitoring surveys for the Bilby and/or Gouldian Finch, if required Cost involved in offsets, based on the size of area and significance of of impact to the Bilby and/or Gouldian Finch
Troglofauna – subterranean cave-dwelling fauna	Not previously recorded in region, but EPA Environmental Assessment Guideline No. 12 suggests a high likelihood of occurrence within the region	 If troglofauna are recorded during the pilot, further sampling required to determine species presence outside of the impact area Geological studies to show that voids occupied by troglofauna extend outside of the impact area 	 Second phase of troglofauna surveying Monitoring of troglofauna for the duration of the mining operations 	 Financial Cost involved in second phase of surveying Cost involved in monitoring surveys for the duration of the mining operations
Stygofauna – subterranean aquatic fauna	Not previously recorded in region, but EPA Environmental	If stygofauna are recorded during the pilot study, further sampling required to determine species presence outside of the impact area	Second phase of stygofauna surveyingMonitoring of stygofauna for	 Financial Cost involved in second phase of surveying

Environmental Factor	Likelihood of Occurrence	Likely action required	Predicted conditions on the project (as set by the EPA)	Potential effect on project
	Assessment Guideline No. 12 suggests a high likelihood of occurrence within the region	Hydrological studies to determine the impact area of of the operations on the water table and also until the draw down cone has restored to its original levels after mining operations	 the duration of operations, Modelling of drawdown impact area 	 Cost involved in monitoring surveys until the draw down cone is restored to original levels Cost of hydrological modelling and reporting
Priority 1 flora species, Fuirena nudiflora	100% (recorded)	 Targeted survey to ensure this species had a wider regional distribution Hydrological studies if the project is impacting the flow of water downstream to a degree that could cause flooding upstream where this species is located 	 Buffer or 'no impact' zones placed around known locations of this species Monitoring to ensure this species is not being affected Licence to take required 	 Financial Cost involved in additional surveys and approvals Cost of licence and licence preparation Delay If left to the late stages of the project, the increased survey effort could cause delays
Cyperus sp. (AIC 1501-0149) – Potential new species	100% (recorded)	 Targeted survey to ensure this species had a wider regional distribution Hydrological studies if the project is impacting the flow of water downstream to a degree that could cause flooding upstream where this species is located 	 Buffer or 'no impact' zones placed around known locations of this species Monitoring to ensure this species is not being affected Hydrological study 	 Financial Cost involved in additional surveys and approvals Cost of licence and licence preparation Delay If left to the late stages of the project, the increased survey effort could cause delays
Priority 3 flora species	100% (recorded)	Targeted survey to confirmation that these species are present outside of the study area	Licence to take required	 Financial Cost involved in additional surveys and approvals Delay

Environmental Factor	Likelihood of Occurrence	Likely action required	Predicted conditions on the project (as set by the EPA)	Potential effect on project
				 If left to the late stages of the project, the increased survey effort could cause delays
Potential Priority 3 Priority Ecological Community	Potential PEC community recorded, PEC status not confirmed	 Hydrological studies to determine if the project will have an impact on the potential PEC Determination of whether or not this is in fact a PEC by submission to DPaW 	Buffer or 'no impact' zones placed around the potential PEC Hydrological Monitoring to ensure the PEC is not being affected	 Financial Cost involved in additional surveys and approvals Delay If left to the late stages of the project, the increased survey effort could cause delays
Flora taxa representing range extensions	100% (recorded)	 Desktop assessment of regional distribution (in this report) Targeted regional survey if any taxa are identified to be poorly repesented 	 Licence to take required Monitoring of high importance range extensions 	 Financial Cost involved in additional surveys and approvals Cost of licence and licence preparation Delay If left to the late stages of the project, the increased survey effort could cause delays

4 CONCLUSION AND RECOMMENDATIONS

4.1 FLORA AND VEGETATION

Two-hundred and eighty-four species were recorded with a high presence of families: Poaceae, Fabaceae, Cyperaceae, Amaranthaceae and Euphorbiaceae. One species collected from two sites to the north of the study area, *Cyperus* sp. (AIC 1501-0149), is potentially a new taxon. If this taxon is confirmed to be a new species, buffers should be established around these locations and targeted surveys may be appropriate to confirm the extent of this species' range.

Six Priority taxa were recorded in the study area, consisting of one Priority 1 taxaon; *Fuirena nudiflora*, and five Priority 3 taxa; *Eriachne* sp. Dampier Peninsula (K.F.Kenneally 5946), *Fuirena incrassata*, *Pterocaulon, intermedium, Tephrosia valleculata* and *Triodia caelestialis*. The Priority 1 taxon, *Fuirena nudiflora* was recorded from a single location within the study area. It also currently represents the only recorded location on the Dampier Peninsula, 600 km from the next nearest location.

Seven introduced species were recorded within the study area; Cynodon dactylon, Digitaria ciliaris, Echinochloa colona, Sida acuta, Stylosanthes hamata, Stylosanthes scabra and Tridax procumbens. Of these species, Sida acuta is rated as a declared pest which, according to the WAOL falls under the management category and limits the keeping and distribution of the species.

Vegetation unit *EtMvSi* closely resembles a known PEC 40 km to the north east of the study area and should be investigated further. The impacts on this vegetation unit, if found to be a PEC, from an altered water table may appropriately be assessed via a separate hydrological assessment.

4.2 VERTEBRATE FAUNA

There is expected to be minimal impact on the conservation significant vertebrate fauna species recorded during the first phase of the survey. Species richness appears to be high in the study area, and it is possible that more conservation significant fauna species may be recorded during the second phase.

One of the phase one gecko records may represent a range extension, although this could be a product of a delay in the NatureMap database being updated. There is also the potential that the Greater Bilby utilises the study area, as suitable habitat may be present, although the likelihood of this has not yet been fully assessed. This assessment is dependent on habitat mapping, which will be finalised after the second phase. If it is deemed likely to occur in the study area, an additional targeted survey focussing on this species may be appropriate.

4.3 INVERTEBRATE FAUNA

The two confirmed or potential SRE snail species identified to occur within the study area will potentially only be minimally affected by development works, as additional regional records indicate that these species may be widely distributed across the Dampier Peninsula. There is currently insufficient information to indicate the level of impact on the potential SRE scorpion and isopod morphospecies identified. Comparison with prior surveys suggests there may be numerous SRE species occurring in the study area. However, without having received taxonomic identification reports on four of the taxonomic groups from which samples were collected, the potential impact on these species cannot yet be assessed. In order to evaluate the potential impact of future development on the confirmed or potential SRE species identified, an additional survey assessing the presence of these species outside the study area, to obtain regional context, will likely be required.

4.4 RECOMMENDATIONS

Recommendations include:

- Potential impacts on vegetation unit EtMvSi should be minimised or avoided entirely. If the
 Thunderbird project is developed, impacts on this unit could be assessed / predicted through
 a separate hydrological assessment; and
- If *Cyperus* sp. (AIC 1501-0149) is confirmed to be a new species, a targeted search should be carried out to accurately map the local populaitons and buffers should be established around these to avoid impacts where possible.
- Habitat analysis will not be finalised until after the second phase of the Level 2 fauna survey. If this analysis indicates likelihood for the Greater Bilby to inhabit the study area, an additional targeted survey focusing on this species may be appropriate.
- This report is updated and revised on receipt of a full report in September 2013.

August 2013 38 ecologia

5 REFERENCES

- Alan Tingay and Associates Pty Ltd. 1994. Report of a Fauna Survey of the Perth Airport. Unpublished report for Federal Airports Corporation.
- Pilbara Development Commision. 2010. Available at: www.pdc.wa.gov.au. Accessed
- Biota Environmental Sciences. 2009. James Price Point Terrestrial Fauna Survey: Wet Season 2009.
- Biota Environmental Sciences. 2010a. James Price Point Browse LNG Precinct Targeted Terrestrial Fauna Survey.
- Biota. 2010b. A Vegetation and Flora Survey of James Price Point: Wet Season 2009. Biota Environmental Sciences.
- Biota. 2011a. James Price Point Vegetation Monitoring Program Phase 1 Data Report. Report prepared by Biota Environmental Sciences for Sinclair Knight Merz.
- Biota. 2011b. James Price Point Vegetation Monitoring Program Phase 2 Data Report. Report prepared by Biota Environmental Sciences for Sinclair Knight Merz.
- Colwell, R. K. 2009. EstimateS: Statistical estimation of species richness and shared species from samples. Version 8. University of Connecticut, USA, Connecticut.
- DAFWA. 2013. Western Australian Organism List (WAOL) Declared pest list. Available at http://www.biosecurity.wa.gov.au/organisms/export/PER-DP. Department of Agriculture and Food Western Australia. Government of Western Australia.
- Department of Environment and Conservation. 2012. Invasive Plant Prioritisation Process for DEC.

 Accessed 10th of August 2012. http://dec.wa.gov.au/management-and-protection/plants/invasive-plants/invasive-plant-prioritisation-process.html.
- Department of Environment and Conservation. 2013. Priority Ecological communities for Western Australia. Version 18. Species and Communities Branch, Department of Environment and Conservation, Western Australia.
- ecologia. 2004a. Beagle Bay Big Tree Country Timber Plantation Flora Assessment Survey. Ecologia Environment.
- *ecologia*. 2004b. Beagle Bay Big Tree Country Timber Plantation Groundwater Dependent Ecosystems Flora Assessment. Ecologia Environment.
- ecologia Environment. 2004c. Beagle Bay Big Tree Country Tropical Timber Plantation Project. Fauna Assessment Survey. 18/02/2005
- ecologia. 2011a. James Price Point Light Industrial Area, Workers' Accommodation Camp and Southern Pipeline Vegetation and Flora Survey. Report prepared by ecologia Environment for Sinclair Knight Merz.
- ecologia Environment. 2011b. James Price Point Short Range Endemic Invertebrate Fauna Assessment. Unpublished report for Woodside Energy Limited.
- ecologia Environment. 2011c. Temporary Workers' Accommodation Camp Short-range Endemic Invertebrate Fauna Assessment. Unpublished report for Woodside Energy Limited.
- ENV Australia. 2008. Perpendicular Head-North Head, Packer Island, Gourdon Bay and Coulomb-Quondong Vertebrate Fauna Assessment.
- Environmental Protection Authority. 2004. Guidance for the Assessment of Environmental Factors.

 Guidance Statement 51: Terrestrial Flora and Vegetation Surveys for Environmental Impact
 Assessment in Western Australia. Environmental Protection Authority, Western Australia.

- EPA. 2002. Terrestrial Biological Surveys as an Element of Biodiversity Protection *in* Environmental Protection Authority, ed, Perth.
- EPA. 2004. Terrestrial Fauna Surveys for Environmental Impact Assessment in Western Australia *in* Environmental Protection Authority, ed, Perth.
- Environmental Protection Authority. 2009. Guidance for the Assessment of Environmental Factors, Statement No. 20: Sampling of Short Range Endemic Invertebrate Fauna for Environmental Impact Assessment in Western Australia.
- Framenau, V. W. 2013. Identification and assessment of short-range endemism of scorpions (Scorpiones) and slaters (Isopoda) from Broome, Western Australia. Phoenix Environmental Sciences.
- Hussey, B. M. J., Keighery, G. J., Dodd, J., Lloyd, S. G., and Cousens, R. D. 2007. Western Weeds. Second Edition. The Plant Protection Society of Western Australia and Agriculture Western Australia, Victoria Park.
- Johnson, M. S., Hamilton, Z. R., Murphy, C. E., MacLeay, C. A., Roberts, B., and Kendrick, P. 2004. Evolutionary genetics of island and mainland species of Rhagada (Gastropoda: Pulmonata) in the Pilbara Region, Western Australia Australian Journal of Zoology. 52:341-355.
- MBS. 2010. Ellendale 4 Diamond Project Progressive Rehabilitation Plan West Kimberley Region. MBS Environmental.
- Slack-Smith, S. and Whisson, C. 2011. Land Snails from the James Price Point area, Kimberley, Western Australia.
- The Council of Heads of Australasian Herbaria. 2013. Australia's Virtual Herbarium. Accessed February 2013. http://avh.chah.org.au.
- Western Australian Herbarium. 1998-2013. FloraBase The Western Australian Flora. Department of Environment and Conservation. Available at: http://florabase.dec.wa.gov.au/.
- Whisson, C. 2013. Molluscs from 80km NE of Broome, Western Australia.

APPENDIX A FLORA QUADRAT LOCATIONS

Quadrat	Botanist	Date	Quadrat Size	Phase	Easting	Northing
9	AIC	9/04/2013	50 x 50 m	2	494789	8075984
11	AIC	12/04/2013	50 x 50 m	2	498514	8075814
12	CWP	9/04/2013	50 x 50 m	2	499653	8075125
13	CWP	7/04/2013	50 x 50 m	2	495361	8074331
14	CWP	12/04/2013	50 x 50 m	2	498468	8074919
15	SAJ	10/04/2013	50 x 50 m	2	494196	8074533
16	SAJ	10/04/2013	50 x 50 m	2	493457	8073934
17	CWP	8/04/2013	50 x 50 m	2	497025	8073662
185	SAJ	9/04/2013	50 x 50 m	2	500378	8073356
18C	CWP	14/04/2013	25 x 100 m	2	496949	8076082
195	SAJ	8/04/2013	50 x 50 m	2	497817	8073207
19C	CWP	10/04/2013	50 x 50 m	2	492866	8075609
20	AIC	7/04/2013	50 x 50 m	2	496513	8073167
21	SAJ	9/04/2013	50 x 50 m	2	501241	8073107
22	SAJ		50 x 50 m	2		
		10/04/2013			495127	8072932
23A	AIC	7/04/2013	50 x 50 m	2	491519	8072514
23C	CWP	9/04/2013	50 x 50 m	2	499646	8074187
24	AIC	8/04/2013	50 x 50 m	2	500611	8072377
26	SAJ	11/04/2013	50 x 50 m	2	498247	8072138
29	SAJ	7/04/2013	50 x 50 m	2	491802	8072821
31	CWP	7/04/2013	50 x 50 m	2	493181	8072364
32	AIC	14/04/2013	50 x 50 m	2	501560	8071692
33	SAJ	11/04/2013	50 x 50 m	2	497338	8068954
35	SAJ	14/04/2013	50 x 50 m	2	502849	8070745
36C	CWP	8/04/2013	50 x 50 m	2	496114	8070344
37	SAJ	11/04/2013	50 x 50 m	2	497635	8069657
38	AIC	7/04/2013	50 x 50 m	2	495293	8070278
40	AIC	12/04/2013	50 x 50 m	2	492804	8069895
41S	SAJ	8/04/2013	50 x 50 m	2	496015	8069515
41C	CWP	12/04/2013	50 x 50 m	2	492955	8069182
42	AIC	7/04/2013	50 x 50 m	2	496875	8068718
45	CWP	11/04/2013	50 x 50 m	2	498914	8068318
46	CWP	13/04/2013	50 x 50 m	2	505109	8068209
48	CWP	13/04/2013	50 x 50 m	2	502909	8067801
49	CWP	13/04/2013	50 x 50 m	2	501442	8067568
50	AIC	11/04/2013	50 x 50 m	2	498784	8067453
51	CWP	9/04/2013	50 x 50 m	2	504491	8067353
52	CWP	8/04/2013	50 x 50 m	2	496522	8067652
56	SAJ	8/04/2013	50 x 50 m	2	495748	8066057
58	CWP	10/04/2013	50 x 50 m	2	492382	8076000
61	AIC	7/04/2013	50 x 50 m	2	495331	8073876
62	AIC	7/04/2013	50 x 50 m	2	493471	8072099
66	CWP	10/04/2013	50 x 50 m	2	495669	8072175
69	AIC	8/04/2013	50 x 50 m	2	500103	8071806
70	AIC	10/04/2013	50 x 50 m	2	495707	8072341
76	SAJ	12/04/2013	50 x 50 m	2	497215	8075413
80	CWP	11/04/2013	50 x 50 m	2	498699	8067837
81	CWP	11/04/2013	50 x 50 m	2	499300	8071680
82	SAJ	12/04/2013	50 x 50 m	2	492755	8068650
22N	AIC	9/04/2013	50 x 50 m	2	492733	8076206
36S	SAJ	9/04/2013	50 x 50 m	2	505809	8065995
37N	AIC	8/04/2013	50 x 50 m	2	504944	8066433
53N	AIC			2		
		11/04/2013	50 x 50 m		498219	8067535
82A	AIC	11/04/2013	50 x 50 m	2	498961	8071463
1	RY	21/03/2012	50 x 50 m	1	499677	8067413
3	RY	23/06/2012	50 x 50 m	1	502523	8067699
4	RY	22/06/2012	50 x 50 m	1	493955	8073234
5	RY	25/06/2012	50 x 50 m	1	499829	8071874
6	RY	11/04/2013	50 x 50 m	1	500545	8068053

Quadrat	Botanist	Date	Quadrat Size	Phase	Easting	Northing
9	RY	24/06/2012	25 x 100 m	1	496085	8075978
10	RY	21/03/2012	50 x 50 m	1	495950	8075987
11	RY	21/06/2012	50 x 50 m	1	493242	8074375
12	RY	22/06/2012	50 x 50 m	1	494332	8074125
13	RY	25/06/2012	50 x 50 m	1	495997	8071422
15	RY	24/06/2012	50 x 50 m	1	497314	8068357
16	RY	25/06/2012	50 x 50 m	1	497776	8071234
17	RY	15/06/2012	50 x 50 m	1	494080	8073582
18	RY	21/03/2012	10 x 250 m	1	497409	8074676
19	RY	25/06/2012	50 x 50 m	1	500192	8073619
20	RY	21/06/2012	50 x 50 m	1	500022	8067396
20B	RY	21/03/2012	50 x 50 m	1	491807	8074300

This page has been left blank intentionally.

APPENDIX B FLORA SPECIES LIST RECORDED IN THE STUDY AREA

Dicliptera armata Trianthema oxycalyptra var. oxycalyptra Trianthema pilosa Achyranthes aspera		X	X
Trianthema pilosa Achyranthes aspera		Y	Х
Achyranthes aspera		χ	
, ,		^	Х
			Х
Amaranthus undulatus			Х
Gomphrena canescens subsp. canescens		Χ	Х
Gomphrena flaccida		Х	Х
Gomphrena lanata			Х
Gomphrena leptoclada subsp. leptoclada			Х
Ptilotus corymbosus		Х	Х
Ptilotus fusiformis			Х
Ptilotus lanatus			Х
Ptilotus polystachyus			Χ
Ptilotus sp			
Crinum sp.			Χ
Apocynaceae sp.			Х
Carissa lanceolata		Х	Х
Ichnocarpus frutescens			Х
Marsdenia angustata			Х
Marsdenia viridiflora subsp. tropica		Х	Х
Wrightia saligna		Х	Х
Trachymene microcephala		Х	Х
Thysanotus chinensis		Х	Х
Asteraceae sp.		Х	
,		Х	
Blumea tenella		Х	
Cyanthillium cinereum			Х
Pterocaulon intermedium	P3	Х	Х
Pterocaulon paradoxum			Х
,		Х	Х
		Х	Х
·			Х
	Introduced		X
•		Х	Х
, ,			X
3			X
			Х
			X
, ,			X
, ,			X
,	1	X	X
•	1		X
, , ,	1		^
,	1		Х
			^
•	+		Х
			X
			X
	+		X
	+	У	X
	+	_^	X
· · · · · · · · · · · · · · · · · · ·		Y	X
			X
			X
			X
Evolvulus alsinoides Evolvulus alsinoides var. decumbens	+	X	
Ipomoea coptica		٨	X
inomona contica			
	Ptilotus corymbosus Ptilotus fusiformis Ptilotus lanatus Ptilotus polystachyus Ptilotus sp Crinum sp. Apocynaceae sp. Carissa lanceolata Ichnocarpus frutescens Marsdenia angustata Marsdenia viridiflora subsp. tropica Wrightia saligna Trachymene microcephala Thysanotus chinensis Asteraceae sp. Blumea integrifolia Blumea tenella Cyanthillium cinereum Pterocaulon intermedium Pterocaulon serrulatum var. velutinum Pterocaulon serrulatum var. velutinum Pterocaulon tricholobum Tridax procumbens Dolichandrone heterophylla Ehretia saligna var. saligna Heliotropium cunninghamii Heliotropium dichotomum Heliotropium glabellum Heliotropium leptaleum Trichodesma zeylanicum Trichodesma zeylanicum Trichodesma zeylanicum Stackhousia intermedia Cleome tetrandra var. tetrandra Cleome viscosa Terminalia canescens Terminalia ferdinandiana Terminalia sp. Murdannia graminea Bonamia linearis Evolvulus alsinoides	Ptilotus fusiformis Ptilotus fusiformis Ptilotus fusiformis Ptilotus polystachyus Ptilotus sp Crinum sp. Apocynaceae sp. Carissa lanceolata Ichnocarpus frutescens Marsdenia origuifilora subsp. tropica Wrightia saligna Trachymene microcephala Thysanotus chinensis Asteraceae sp. Blumea integrifolia Blumea tenella Cyanthillium cinereum Pterocaulon paradoxum Pterocaulon sphacelatum Pterocaulon serrulatum var. velutinum Pterocaulon tricholobum Tridax procumbens Dolichandrone heterophylla Ehretia saligna var. saligna Heliotropium dichotomum Heliotropium foliatum Heliotropium foliatum Heliotropium leptaleum Trichodesma zeylanicum var. zeylanicum Byblis filifolia Byblis rorida Polycarpaea longiflora Stackhousia intermedia Cleome tetrandra var. tetrandra Cleome viscosa Terminalia canescens Terminalia ferdinandiana Terminalia sp. Murdannia graminea Bonamia linearis Evolvulus alsinoides	Ptilotus fusiformis Ptilotus fusiformis Ptilotus playstachyus Ptilotus oplystachyus Ptilotus sp Crinum sp. Apocynaceae sp. Corinssa lanceolata Ichnocarpus frutescens Marsdenia angustata Marsdenia viridiflora subsp. tropica Wrightia saligna Trachymene microcephala Thysanotus chinensis Asteraceae sp. Blumea integrifolia Blumea integrifolia Blumea tenella Cyanthillium cinereum Pterocaulon intermedium Pterocaulon spracdavum Pterocaulon spracelatum X Pterocaulon serrulatum var. velutinum Pterocaulon serrulatum var. velutinum Pterocaulon iricholobum Tridax procumbens Dolichandrone heterophylla Ehliotropium dichotomum Heliotropium foliatum Heliotropium foliatum Heliotropium foliatum Heliotropium foliatum Heliotropium foliatum Heliotropium leptaleum Trichodesma zeylanicum Trichodesma zeylanicum var. zeylanicum Stackhousia intermedia X Polycarpaea corymbosa Polycarpaea longiflora Stackhousia intermedia Cleome viscosa Terminalia op. Ax Murdannia graminea Bonamia linearis X Evolvulus alsinoides X Evolvulus alsinoides X X X X X X X X X X X X X X X X X X X

Family	Taxon	Status	Phase 1	Phase 2
Convolvulaceae	Polymeria ambigua		Х	Х
Convolvulaceae	Xenostegia tridentata		Х	Х
Cyperaceae	Abildgaardia schoenoides			Х
Cyperaceae	Bulbostylis barbata		Х	Х
Cyperaceae	Crosslandia setifolia			Х
Cyperaceae	Cyperaceae sp 2 ENE		Х	
Cyperaceae	Cyperus ? conicus		Х	
Cyperaceae	Cyperus conicus			Х
Cyperaceae	Cyperus latzii			Х
Cyperaceae	Cyperus microcephalus		Х	
Cyperaceae	Cyperus microcephalus subsp. microcephalus			Х
Cyperaceae	Cyperus nervulosus			Х
Cyperaceae	Cyperus pulchellus			Х
Cyperaceae	Cyperus sp. (AIC 1501-0149)			Χ
Cyperaceae	Cyperus squarrosus			Х
Cyperaceae	Cyperus tenuispica			Х
Cyperaceae	Eleocharis geniculata		Х	
Cyperaceae	Fimbristylis ammobia			Х
Cyperaceae	Fimbristylis caespitosa			Х
Cyperaceae	Fimbristylis dichotoma		Х	
Cyperaceae	Fimbristylis littoralis			Х
Cyperaceae	Fimbristylis macrantha			Х
Cyperaceae	Fimbristylis microcarya			Х
Cyperaceae	Fimbristylis neilsonii			Х
Cyperaceae	Fimbristylis nuda			Х
Cyperaceae	Fimbristylis punctata			Х
Cyperaceae	Fimbristylis rara			Х
Cyperaceae	Fimbristylis simulans		Х	Х
Cyperaceae	Fimbristylis tetragona			Х
Cyperaceae	Fimbristylis trigastrocarya			Х
Cyperaceae	Fuirena ciliaris		Х	Х
Cyperaceae	Fuirena incrassata	P3		Х
Cyperaceae	Fuirena nudiflora	P1		Х
Cyperaceae	Lipocarpha microcephala		Х	Х
Cyperaceae	Scleria brownii		Х	Х
Droseraceae	Drosera broomensis			Х
Droseraceae	Drosera derbyensis		Х	Х
Droseraceae	Drosera indica		Х	Х
Euphorbiaceae	Euphorbia ?australis		Х	
Euphorbiaceae	Euphorbia hassallii			Х
Euphorbiaceae	Euphorbia mitchelliana			Х
Euphorbiaceae	Euphorbia myrtoides		Х	
Euphorbiaceae	Euphorbia psilosperma			Х
Euphorbiaceae	Euphorbia schultzii			Х
Euphorbiaceae	Euphorbia schultzii var. comans			Х
Euphorbiaceae	Euphorbia sp.		Х	
Euphorbiaceae	Euphorbia trigonosperma			Х
Euphorbiaceae	Euphorbia vicina			Х
Euphorbiaceae	Microstachys chamelea		Х	Х
Fabaceae	Acacia colei var. colei		Х	Х
Fabaceae	Acacia drepanocarpa subsp. latifolia		Х	
Fabaceae	Acacia eriopoda			Х
Fabaceae	Acacia hippuroides		Х	Х
Fabaceae	Acacia monticola		Х	Х
Fabaceae	Acacia platycarpa		Х	Х
Fabaceae	Acacia sp.			Х
Fabaceae	Acacia stigmatophylla			Х
Fabaceae	Acacia stipuligera		Х	
Fabaceae	Acacia tumida var. tumida		Х	Х

Family	Taxon	Status	Phase 1	Phase 2
Fabaceae	Alysicarpus muelleri			Х
Fabaceae	Aphyllodium biarticulatum			Х
Fabaceae	Bauhinia cunninghamii		Χ	Х
Fabaceae	Cajanus cinereus			Х
Fabaceae	Cajanus marmoratus			Х
Fabaceae	Chamaecrista mimosoides		Χ	Х
Fabaceae	Chamaecrista symonii		Χ	Х
Fabaceae	Crotalaria brevis		Χ	Х
Fabaceae	Crotalaria crispata		Χ	Х
Fabaceae	Crotalaria medicaginea var. neglecta		Χ	Х
Fabaceae	Desmodium filiforme		Χ	Х
Fabaceae	Erythrophleum chlorostachys		Χ	Х
Fabaceae	Galactia tenuiflora		Χ	Х
Fabaceae	Glycine tomentella		Χ	Χ
Fabaceae	Indigofera colutea			Χ
Fabaceae	Indigofera haplophylla		Χ	Χ
Fabaceae	Indigofera hirsuta			Χ
Fabaceae	Indigofera linifolia		Χ	Х
Fabaceae	Senna costata			Х
Fabaceae	Senna oligoclada		Х	Х
Fabaceae	Stylosanthes hamata	Introduced	Х	Х
Fabaceae	Stylosanthes scabra	Introduced	Х	Х
Fabaceae	Tephrosia brachyodon var. longifolia			Х
Fabaceae	Tephrosia crocea			Х
Fabaceae	Tephrosia forrestiana		Х	
Fabaceae	Tephrosia leptoclada		Х	Х
Fabaceae	Tephrosia remotiflora		Х	Х
Fabaceae	Tephrosia simplicifolia		Х	Х
Fabaceae	Tephrosia sp. D Kimberley Flora (R.D. Royce 1848)			Х
Fabaceae	Tephrosia valleculata	Р3		Х
Fabaceae	Uraria lagopodioides			Х
Fabaceae	Vigna lanceolata			Х
Fabaceae	Vigna lanceolata var. filiformis		Х	Х
Fabaceae	Zornia chaetophora			Х
Fabaceae	Zornia prostrata		Х	
Fabaceae	Zornia prostrata var. prostrata		Х	Х
Goodeniaceae	Goodenia armitiana			Х
Goodeniaceae	Goodenia scaevolina		Х	Х
Goodeniaceae	Goodenia sepalosa			Х
Goodeniaceae	Goodenia sepalosa var. sepalosa		Х	Х
Goodeniaceae	Velleia panduriformis		Х	Х
Gyrostemonaceae	Codonocarpus cotinifolius		Х	
Hernandiaceae	Gyrocarpus americanus subsp. pachyphyllus			Х
Lamiaceae	Clerodendrum floribundum var. ovatum			Х
Lamiaceae	Premna acuminata		Χ	Х
Lauraceae	Cassytha capillaris			Х
Lentibulariaceae	Utricularia kimberleyensis			Х
Loganiaceae	Mitrasacme connata			Х
Loganiaceae	Mitrasacme exserta			Х
Loganiaceae	Mitrasacme hispida			Х
Loganiaceae	Mitrasacme lutea			Х
Loganiaceae	Mitrasacme sp.			Х
Lythraceae	Rotala occultiflora		Х	
Malvaceae	Abutilon hannii			Х
Malvaceae	Abutilon otocarpum			Х
Malvaceae	Brachychiton diversifolius		Х	
Malvaceae	Brachychiton diversifolius subsp. diversifolius		Х	Х
Malvaceae	Corchorus aestuans			Х
Malvaceae	Corchorus sidoides subsp. vermicularis		Х	Х

Family	Taxon	Status	Phase 1	Phase 2
Malvaceae	Corchorus tridens			Х
Malvaceae	Gossypium australe		Х	Х
Malvaceae	Hibiscus geranioides		Х	Х
Malvaceae	Hibiscus sp.			Х
Malvaceae	Melhania oblongifolia		Х	
Malvaceae	Melochia corchorifolia		Х	Х
Malvaceae	Sida acuta	Introduced		Х
Malvaceae	Sida hackettiana		Х	Х
Malvaceae	Sida rohlenae subsp. occidentalis			Х
Malvaceae	Sida spinosa		Х	
Malvaceae	Triumfetta albida			Х
Malvaceae	Triumfetta breviaculeata		Х	
Malvaceae	Triumfetta plumigera		Х	Х
Malvaceae	Triumfetta sp.		Х	
Malvaceae	Waltheria indica		Х	Х
Menispermaceae	Tinospora smilacina		Х	Х
Moraceae	Ficus aculeata var. indecora		Х	
Moraceae	Ficus platypoda		X	X
Myrtaceae	Calytrix exstipulata		X	X
Myrtaceae	Corymbia dendromerinx		Х	X
Myrtaceae	Corymbia flavescens			X
Myrtaceae	Corymbia greeniana		X	X
Myrtaceae	Corymbia zygophylla		X	X
Myrtaceae	Eucalyptus tectifica		X	Х
Myrtaceae	Lophostemon grandiflorus		Х	
Myrtaceae	Lophostemon grandiflorus subsp. riparius			X
Myrtaceae	Melaleuca alsophila			X
Myrtaceae	Melaleuca nervosa		X	X
Myrtaceae	Melaleuca viridiflora		Х	X
Nyctaginaceae	Boerhavia coccinea			X
Nyctaginaceae Oleaceae	Boerhavia gardneri		V	X
Onagraceae	Jasminum molle Ludwigia perennis		X	X
Opiliaceae	Opilia amentacea		^	X
Orobanchaceae	Buchnera asperata		Х	X
Orobanchaceae	Buchnera linearis		X	^
Orobanchaceae	Striga curviflora		^	Х
Phrymaceae	Mimulus uvedaliae var. lutea		Х	X
Phyllanthaceae	Breynia cernua		_ ^	X
Phyllanthaceae	Bridelia tomentosa		Х	Λ
Phyllanthaceae	Flueggea virosa subsp. melanthesoides		X	Х
Phyllanthaceae	Phyllanthus exilis			X
Phyllanthaceae	Phyllanthus maderaspatensis			X
Phyllanthaceae	Phyllanthus virgatus		Х	X
Phyllanthaceae	Sauropus trachyspermus			X
Plantaginaceae	Bacopa floribunda		Х	
Plantaginaceae	Stemodia lathraia		X	Х
Plantaginaceae	Stemodia lythrifolia		X	Х
Poaceae	Aristida holathera			X
Poaceae	Aristida holathera var. holathera		Х	X
Poaceae	Aristida holathera var. latifolia		Х	Х
Poaceae	Aristida hygrometrica		Х	Х
Poaceae	Aristida inaequiglumis		X	X
Poaceae	Cenchrus elymoides		X	X
Poaceae	Cenchrus elymoides var. elymoides			X
Poaceae	Chloris lobata			X
Poaceae	Chrysopogon pallidus			X
Poaceae	Chrysopogon sp.		Х	
Poaceae	Cymbopogon bombycinus		Х	
	, , , , ,	•		•

Family	Taxon	Status	Phase 1	Phase 2
Poaceae	Cymbopogon procerus		Х	Х
Poaceae	Cynodon dactylon	Introduced	Χ	
Poaceae	Dactyloctenium radulans			Х
Poaceae	Digitaria bicornis		Х	
Poaceae	Digitaria brownii			Х
Poaceae	Digitaria ciliaris	Introduced		Х
Poaceae	Echinochloa colona	Introduced		Х
Poaceae	Ectrosia schultzii		Х	
Poaceae	Ectrosia schultzii var. schultzii			Х
Poaceae	Eragrostis ?eriopoda		Х	
Poaceae	Eragrostis cumingii		Х	Х
Poaceae	Eragrostis eriopoda			Х
Poaceae	Eragrostis exigua			Х
Poaceae	Eragrostis sp.			
Poaceae	Eriachne ciliata		Х	Х
Poaceae	Eriachne melicacea		Χ	Χ
Poaceae	Eriachne obtusa		Χ	Χ
Poaceae	Eriachne sp. Dampier Peninsula (K.F.Kenneally 5946)	P3	Χ	Χ
Poaceae	Eriachne sulcata		Χ	Χ
Poaceae	Heteropogon contortus		Х	Х
Poaceae	Mnesithea formosa			Χ
Poaceae	Paspalidium rarum		Х	Х
Poaceae	Perotis rara			Х
Poaceae	Sacciolepis indica		Х	
Poaceae	Schizachyrium fragile			Х
Poaceae	Sehima nervosum			Х
Poaceae	Setaria apiculata		Х	Х
Poaceae	Setaria surgens			Х
Poaceae	Sorghum plumosum		Х	Х
Poaceae	Sorghum timorense			Х
Poaceae	Sporobolus australasicus		Х	
Poaceae	Thaumastochloa major			Х
Poaceae	Thaumastochloa pubescens			Х
Poaceae	Triodia caelestialis	Р3	Х	Х
Poaceae	Triodia intermedia		Х	
Poaceae	Triodia schinzii			Х
Poaceae	Triodia sp.			Х
Poaceae	Urochloa praetervisa			Х
Poaceae	Xerochloa laniflora			Х
Poaceae	Yakirra australiensis			Х
Poaceae	Yakirra australiensis var. australiensis			Х
Poaceae	Yakirra australiensis var. intermedia		Х	Х
Poaceae	Yakirra pauciflora			Х
Poaceae	Yakirra pauciflora			X
Polygalaceae	Polygala galeocephala			X
Polygalaceae	Polygala tepperi		Х	Х
Portulacaceae	Calandrinia strophiolata		X	X
Portulacaceae	Portulaca aff. filifolia			Х
Portulacaceae	Portulaca bicolor	1		X
Proteaceae	Grevillea pyramidalis	1		X
Proteaceae	Grevillea pyramidalis subsp. pyramidalis	1	Х	X
Proteaceae	Grevillea refracta subsp. refracta		X	X
Proteaceae	Grevillea striata	1	-,	X
Proteaceae	Hakea arborescens		Х	X
Proteaceae	Hakea macrocarpa			X
Proteaceae	Persoonia falcata		Х	X
Proteaceae	Synaphea sp.	 		X
Pteridaceae	Cheilanthes ?nudiuscula	1		X
Pteridaceae	Cheilanthes induisculd Cheilanthes brownii			X
i terruatede	Chellullules browilli	<u> </u>	<u> </u>	^

Family	Taxon	Status	Phase 1	Phase 2
Rhamnaceae	Ventilago viminalis		Х	Х
Rubiaceae	Dentella misera			Х
Rubiaceae	Gardenia pyriformis subsp. keartlandii		Х	Х
Rubiaceae	Oldenlandia galioides		Х	Χ
Rubiaceae	Oldenlandia mitrasacmoides			Х
Rubiaceae	Oldenlandia mitrasacmoides subsp. mitrasacmoides		Х	
Rubiaceae	Spermacoce occidentalis		Х	Х
Rubiaceae	Synaptantha scleranthoides			Х
Santalaceae	Santalum lanceolatum		Х	Х
Sapindaceae	Atalaya hemiglauca		Х	Х
Sapindaceae	Atalaya variifolia		Х	Х
Sapindaceae	Dodonaea hispidula var. arida		Х	Х
Solanaceae	Solanum cunninghamii		Х	Х
Thymelaeaceae	Thecanthes punicea			Х
Violaceae	Hybanthus aurantiacus		Х	Х
Violaceae	Hybanthus enneaspermus subsp. enneaspermus			Х
Xyridaceae	Xyris complanata		Х	Х
Zygophyllaceae	Tribulopis angustifolia			Х
Zygophyllaceae	Tribulopis pentandra			Х

This page has been left blank intentionally.

APPENDIX C LOCATIONS OF PRIORITY FLORA RECORDED IN THE STUDY AREA

Table B.1 – Locations of Priority Flora

Phase of				
Priority Status	Taxon	Easting	Northing	survey
P1	Fuirena nudiflora	498513	8075814	2
P3	Eriachne sp. Dampier Peninsula (K.F. Kennealy 5946)	500362	8071952	2
Р3	Eriachne sp. Dampier Peninsula (K.F. Kennealy 5946)	499829	8071874	1
Р3	Eriachne sp. Dampier Peninsula (K.F. Kennealy 5946)	497314	8068337	1
Р3	Eriachne sp. Dampier Peninsula (K.F. Kennealy 5946)	497409	8074626	1
Р3	Eriachne sp. Dampier Peninsula (K.F.Kenneally 5946)	495360	8074330	2
Р3	Eriachne sp. Dampier Peninsula (K.F.Kenneally 5946)	498468	8074919	2
P3	Eriachne sp. Dampier Peninsula (K.F.Kenneally 5946)	501241	8073130	2
Р3	Eriachne sp. Dampier Peninsula (K.F.Kenneally 5946)	492804	8069895	2
P3	Eriachne sp. Dampier Peninsula (K.F.Kenneally 5946)	498783	8067452	2
Р3	Eriachne sp. Dampier Peninsula (K.F.Kenneally 5946)	499300	8071679	2
Р3	Eriachne sp. Dampier Peninsula (K.F.Kenneally 5946)	496600	8068656	2
P3	Fuirena incrassata	498513	8075814	2
Р3	Pterocaulon intermedium	496948	8076082	2
Р3	Pterocaulon intermedium	496014	8069515	2
Р3	Pterocaulon intermedium	496874	8068718	2
Р3	Pterocaulon intermedium	501746	8071736	2
P3	Pterocaulon intermedium	499645	8074211	2
Р3	Pterocaulon intermedium	499736	8074001	2
Р3	Pterocaulon intermedium	499143	8068184	2
Р3	Pterocaulon intermedium	504227	8070776	2
Р3	Tephrosia valleculata	501559	8071691	2
Р3	Tephrosia valleculata	500103	8071806	2
P3	Tephrosia valleculata	499300	8071679	2
Р3	Triodia caelestialis	494788	8075983	2
Р3	Triodia caelestialis	499653	8075125	2
Р3	Triodia caelestialis	495360	8074330	2
Р3	Triodia caelestialis	498468	8074919	2
P3	Triodia caelestialis	497024	8073661	2
Р3	Triodia caelestialis	500377	8073356	2
Р3	Triodia caelestialis	500377	8073356	2
P3	Triodia caelestialis	492865	8075608	2
P3	Triodia caelestialis	501241	8073130	2
Р3	Triodia caelestialis	501241	8073130	2
Р3	Triodia caelestialis	493844	8076206	2
P3	Triodia caelestialis	491518	8072513	2
P3	Triodia caelestialis	499645	8074186	2
P3	Triodia caelestialis	500610	8072377	2
P3	Triodia caelestialis	491802	8072820	2
P3	Triodia caelestialis	493180	8072364	2
P3	Triodia caelestialis	501559	8071691	2
P3	Triodia caelestialis	502849	8070745	2
P3	Triodia caelestialis	502849	8070745	2
P3	Triodia caelestialis	495292	8070277	2
P3	Triodia caelestialis	492804	8069895	2
P3	Triodia caelestialis	492954	8069182	2
P3	Triodia caelestialis	496014	8069515	2
P3	Triodia caelestialis	502909	8067801	2
P3	Triodia caelestialis	501441	8067567	2
P3	Triodia caelestialis	498783	8067452	2
P3	Triodia caelestialis Triodia caelestialis	496522	8067652	2
P3	Triodia caelestialis	495748	8066057	2
P3	Triodia caelestialis Triodia caelestialis	492382	8076000	2
P3	Triodia caelestialis Triodia caelestialis	492382	8078000	2
P3	Triodia caelestialis Triodia caelestialis	500103	8072099	2
F.3	ו וווטעוע נעבובאוועווא	200102	0011000	_

Priority Status	Taxon	Easting	Northing	Phase of survey
P3	Triodia caelestialis	497215	8075412	2
P3	Triodia caelestialis	497215	8075412	2
Р3	Triodia caelestialis	497215	8075412	2
Р3	Triodia caelestialis	499300	8071679	2
Р3	Triodia caelestialis	496547	8073307	2
Р3	Triodia caelestialis	494237	8076007	2
Р3	Triodia caelestialis	502361	8067614	2
Р3	Triodia caelestialis	501977	8064692	2
P3	Triodia caelestialis	502224	8063975	2
P3	Triodia caelestialis	496166	8073465	2
Р3	Triodia caelestialis	495405	8074098	2
Р3	Triodia caelestialis	499749	8073601	2
P3	Triodia caelestialis	492865	8075563	2
Р3	Triodia caelestialis	498021	8068475	2
P3	Triodia caelestialis	498914	8068318	2
Р3	Triodia caelestialis	497584	8075440	2
Р3	Triodia caelestialis	503967	8070730	2
P3	Triodia caelestialis	503519	8070695	2
P3	Triodia caelestialis	497574	8075714	2
P3	Triodia caelestialis	497004	8075953	2
P3	Triodia caelestialis	497183	8075890	2
P3	Triodia caelestialis	493341	8074570	2
P3	Triodia caelestialis	491539	8072602	2
Р3	Triodia caelestialis	497985	8068005	2
P3	Triodia caelestialis	497865	8075466	2
Р3	Triodia caelestialis	498001	8075549	2
Р3	Triodia caelestialis	503097	8067697	2
Р3	Triodia caelestialis	501772	8067538	2
P3	Triodia caelestialis	501241	8067496	2
Р3	Triodia caelestialis	501960	8064274	2
P3	Triodia caelestialis	502916	8064085	2
P3	Triodia caelestialis	502636	8072555	2
P3	Triodia caelestialis	502523	8067699	1
P3	Triodia caelestialis	493955	8073234	1
Р3	Triodia caelestialis	500545	8068053	1
P3	Triodia caelestialis	496085	8075978	1
P3	Triodia caelestialis	495950	8075987	1
P3	Triodia caelestialis	493242	8074375	1
P3	Triodia caelestialis	494332	8074125	1
P3	Triodia caelestialis	495997	8071422	1
P3	Triodia caelestialis	497314	8068357	1
P3	Triodia caelestialis	497776	8071234	1
P3	Triodia caelestialis	494080	8073582	1
P3	Triodia caelestialis	497409	8074676	1
P3	Triodia caelestialis	500192	8073619	1
P3	Triodia caelestialis	491807	8074300	1
P3	Triodia caelestialis	500022	8067396	1
P3	Pterocaulon intermedium	495997	8071402	1

This page has been left blank intentionally.

APPENDIX D CONSERVATION CODES FOR THREATENED AND PRIORITY FLORA AND FAUNA SPECIES AND ECOLOGICAL COMMUNITIES

Table D.1 – Definition of codes for Threatened and Priority Flora (DPaW)

Code	Definition
Т	Threatened Flora – (Declared Rare Flora – Extant)
	Taxa which have been adequately searched for and are deemed to be in the wild either rare, in danger of extinction, or otherwise in need of special protection and have been gazetted as such (Schedule 1 under the <i>Wildlife Conservation Act 1950</i>).
Х	Presumed Extinct Flora (Declared Rare Flora - Extinct)
	Taxa which have been adequately searched for and there is no reasonable doubt that the last individual has died, and have been gazetted as such Schedule 2 under the <i>Wildlife Conservation Act</i> 1950).
P1	Priority One – Poorly Known Species
	Species that are known from one or a few collections or sight records (generally less than five), all on lands not managed for conservation, e.g. agricultural or pastoral lands, urban areas, Shire, Westrail and Main Roads WA road, gravel and soil reserves, and active mineral leases and under threat of habitat destruction or degradation. Species may be included if they are comparatively well known from one or more localities but do not meet adequacy of survey requirements and appear to be under immediate threat from known threatening processes.
P2	Priority Two – Poorly Known Species
	Species that are known from one or a few collections or sight records, some of which are on lands not under imminent threat of habitat destruction or degradation, e.g. national parks, conservation parks, nature reserves, State forest, vacant Crown land, water reserves, etc. Species may be included if they are comparatively well known from one or more localities but do not meet adequacy of survey requirements and appear to be under threat from known threatening processes.
P3	Priority Three – Poorly Known Species
	Species that are known from collections or sight records from several localities not under imminent threat, or from few but widespread localities with either large population size or significant remaining areas of apparently suitable habitat, much of it not under imminent threat. Species may be included if they are comparatively well known from several localities but do not meet adequacy of survey requirements and known threatening processes exist that could affect them.
P4	Priority Four – Rare, Near Threatened and other species in need of monitoring
	 (a) Rare. Species that are considered to have been adequately surveyed, or for which sufficient knowledge is available, and that are considered not currently threatened or in need of special protection, but could be if present circumstances change. These species are usually represented on conservation lands. (b) Near Threatened. Species that are considered to have been adequately surveyed and that do not qualify for Conservation Dependent, but that are close to qualifying for Vulnerable. (c) Species that have been removed from the list of threatened species during the past five years for reasons other than taxonomy.
P5	Priority Five - Conservation Dependent species
	Species that are not threatened but are subject to a specific conservation program, the cessation of which would result in the species becoming threatened within five years.

Table D.2 – Definition of codes for Commonwealth Listed Threatened Flora

Code	Definition
Ex	Extinct
	Taxa which at a particular time if, at that time, there is no reasonable doubt that the last member of the species has died.
ExW	Extinct in the Wild
	Taxa which is known only to survive in cultivation, in captivity or as a naturalised population well outside its past range; or it has not been recorded in its known and/or expected habitat, at appropriate seasons, anywhere in its past range, despite exhaustive surveys over a time frame appropriate to its life cycle and form.
CE	Critically Endangered
	Taxa which at a particular time if, at that time, it is facing an extremely high risk of extinction in the wild in the immediate future, as determined in accordance with the prescribed criteria.
Е	Endangered
	Taxa which is not critically endangered and it is facing a very high risk of extinction in the wild in the immediate or near future, as determined in accordance with the prescribed criteria.
V	Vulnerable
	Taxa which is not critically endangered or endangered and is facing a high risk of extinction in the wild in the medium-term future, as determined in accordance with the prescribed criteria.
CD	Conservation Dependent
	Taxa which at a particular time if, at that time, the species is the focus of a specific conservation programme, the cessation of which would result in the species becoming vulnerable, endangered or critically endangered within a period of 5 years.

Table D.3 – Definition of codes for Threatened Ecological Communities

Code	Definition
PD: Presumed Totally Destroyed	An ecological community that has been adequately searched for but for which no representative occurrences have been located. The community has been found to be totally destroyed or so extensively modified throughout its range that no occurrence of it is likely to recover its species composition and/or structure in the foreseeable future. An ecological community will be listed as presumed totally destroyed if there are no recent records of the community being extant
CR: Critically Endangered	An ecological community that has been adequately surveyed and found to have been subject to a major contraction in area and/or that was originally of limited distribution and is facing severe modification or destruction throughout its range in the immediate future, or is already severely degraded throughout its range but capable of being substantially restored or rehabilitated. An ecological community will be listed as Critically Endangered when it has been adequately surveyed and is found to be facing an extremely high risk of total destruction in the immediate future.
EN: Endangered	An ecological community that has been adequately surveyed and found to have been subject to a major contraction in area and/or was originally of limited distribution and is in danger of significant modification throughout its range or severe modification or destruction over most of its range in the near future. An ecological community will be listed as Endangered when it has been adequately surveyed and is not Critically Endangered but is facing a very high risk of total destruction in the near future.
VU: Vulnerable	An ecological community that has been adequately surveyed and is found to be declining and/or has declined in distribution and/or condition and whose ultimate security has not yet been assured and/or a community that is still widespread but is believed likely to move into a category of higher threat in the near future if threatening processes continue or begin operating throughout its range. An ecological community will be listed as Vulnerable when it has been adequately surveyed and is not Critically Endangered or Endangered but is facing a high risk of total destruction or significant modification in the medium to long-term future.

Table D.4 – Definition of codes for Priority Ecological Communities

Code	Definition
P1: Priority One	Ecological communities with apparently few, small occurrences, all or most not actively managed for conservation (e.g. within agricultural or Pastoral lands, urban areas, active mineral leases) and for which current threats exist. Communities may be included if they are comparatively well-known from one or more localities but do not meet adequacy of survey requirements, and/or are not well defined, and appear to be under immediate threat from known threatening processes across their range.
P2: Priority Two	Communities that are known from few small occurrences, all or most of which are actively managed for conservation (e.g. within national parks, conservation parks, nature reserves, State forest, unallocated Crown land, water reserves, etc.) and not under imminent threat of destruction or degradation. Communities may be included if they are comparatively well known from one or more localities but do not meet adequacy of survey requirements, and/or are not well defined, and appear to be under threat from known threatening processes.
	(i) Communities that are known from several to many occurrences, a significant number or area of which are not under threat of habitat destruction or degradation or:
	(ii) Communities known from a few widespread occurrences, which are either large or within significant remaining areas of habitat in which other occurrences may occur, much of it not under imminent threat, or;
P3: Priority Three	(iii) Communities made up of large, and/or widespread occurrences that may or not be represented in the reserve system, but are under threat of modification across much of their range from processes such as grazing by domestic and/or feral stock, and inappropriate fire regimes.
	Communities may be included if they are comparatively well known from several localities but do not meet adequacy of survey requirements and/or are not well defined, and known threatening processes exist that could affect them.
	Ecological communities that are adequately known, Rare but not threatened or meet criteria for Near Threatened, or that have been recently removed from the threatened list. These communities require regular monitoring.
	(a) Rare. Ecological communities known from few occurrences that are considered to have been adequately surveyed, or for which sufficient knowledge is available, and that are considered not currently threatened or in need of special protection, but could be if present circumstances change. These communities are usually represented on conservation lands.
P4: Priority Four	(b) Near Threatened. Ecological communities that are considered to have been adequately surveyed and that do not qualify for Conservation Dependent, but that are close to qualifying for Vulnerable.
	(c) Ecological communities that have been removed from the list of threatened communities during the past five years.
	P5: Priority Five Ecological communities that are not threatened but are subject to a specific conservation program, the cessation of which would result in the community becoming threatened within five years.
P5: Priority Five	Ecological communities that are not threatened but are subject to a specific conservation program, the cessation of which would result in the community becoming threatened within five years.

Table D.5 – Definition of codes for Threatened Fauna (WC Act)

Code	Definition	
Т	Fauna that is rare or likely to become extinct	
(Schedule 1)	Taxa that have been adequately searched for and are deemed to be in the wild either rare, in danger of extinction or otherwise in need of special protection, and have been gazetted as such.	
	Further categorised as: O CR Critically Endangered – considered to be facing an extremely high risk of extinction in the wild	
	 EN Endangered – considered to be facing a very high risk of extinction in the wild VU Vulnerable – considered to be facing a high risk of extinction in the wild. 	
Х	Presumed Extinct Fauna	
(Schedule 2)	Taxa which have been adequately searched for and there is no reasonable doubt that the last individual has died, and have been gazetted as such.	
IA	Birds protected under an international agreement.	
(Schedule 3)	Birds that are subject to an agreement between the governments of Australia and Japan relating to the protection of migratory birds and birds in danger of extinction are declared to be fauna that is in need of special protection.	
S	Other specially protected fauna	
(Schedule 4)	Fauna that is in need of special protection, otherwise than for the reasons mentioned [in Schedule $1-3$].]	

Table D.6 – Definition of codes for Priority Fauna (WC Act)

Code	Definition				
P1	Priority One Taxa with few, poorly known populations on threatened lands. Taxa which are known from few specimens or sight records from one or a few localities on lands not managed for conservation, e.g. agricultural or pastoral lands, urban areas, active mineral leases. The taxon needs urgent survey and evaluation of conservation status before consideration can be given to declaration as threatened fauna.				
P2	Priority Two Taxa with few, poorly known populations on conservation lands. Taxa which are known from few specimens or sight records from one or a few localities on lands not under immediate threat of habitat destruction or degradation, e.g. national parks, conservation parks, nature reserves, State forest, vacant Crown land, water reserves, etc. The taxon needs urgent survey and evaluation of conservation status before consideration can be given to declaration as threatened fauna.				
P3	Priority Three Taxa with several, poorly known populations, some on conservation lands. Taxa which are known from few specimens or sight records from several localities, some of which are on lands not under immediate threat of habitat destruction or degradation. The taxon needs urgent survey and evaluation of conservation status before consideration can be given to declaration as threatened fauna.				
P4	Priority Four Taxa in need of monitoring. Taxa which are considered to have been adequately surveyed, or for which sufficient knowledge is available, and which are considered not currently threatened or in need of special protection, but could be if present circumstances change. These taxa are usually represented on conservation lands.				
P5	Priority Five Taxa in need of monitoring. Taxa which are not considered threatened but are subject to a specific conservation program, the cessation of which would result in the species becoming threatened within five years.				

Table D.7 – Definition of codes for Threatened Fauna (EPBC Act)

Code	Definition
Ex	Extinct
	Taxa not definitely located in the wild during the past 50 years
ExW	Extinct in the Wild
	Taxa known to survive only in captivity
CE	Critically Endangered
	Taxa facing an extremely high risk of extinction in the wild in the immediate future
Е	Endangered
	Taxa facing a very high risk of extinction in the wild in the near future
V	Vulnerable
V	Taxa facing a high risk of extinction in the wild in the medium-term
NT	Near Threatened
NT	Taxa that risk becoming Vulnerable in the wild
	Conservation Dependent
CD	Taxa whose survival depends upon ongoing conservation measures. Without these measures, a conservation dependent taxon would be classified as Vulnerable or more severely threatened.
DD	Data Deficient (Insufficiently Known)
	Taxa suspected of being Rare, Vulnerable or Endangered, but whose true status cannot be determined without more information.
М	Migratory
	Taxa listed under one or more of the following International Conventions:
	Japan-Australia Migratory Bird Agreement (JAMBA)
	China-Australia Migratory Bird Agreement (CAMBA)
	Convention on the Conservation of Migratory Species of Wild Animals - (Bonn Convention)

Table D.8 – Definition of codes for potential SRE species

Code	Definition
А	 Extinct There is insufficient data available to determine SRE status. Factors that fall under this category include: Lack of geographic information. Lack of taxonomic information. The group may be poorly represented in collections. The individuals sampled (e.g., juveniles) may prevent identification to species level.
В	Habitat Indicators It is becoming increasingly clear that habitat data can elucidate SRE status. Where habitat is known to be associated with SRE taxa and vice versa, it will be noted here.
С	Morphology Indicators
D	Molecular Evidence If molecular work has been done on this taxon (or a close relative), it may reveal patterns congruent or incongruent with SRE status.
E	Research and Expertise • Previous research and/ or WAM expertise elucidates taxon SRE status. • This category takes into account the expert knowledge held within the WAM.

APPENDIX E LOCATION OF INTRODUCED SPECIES RECORDED WITHIN THE STUDY AREA

Family	Taxon	Easting	Northing	Phase of Survey
Acteraceae	Tridax procumbens	503271	8067541	2
Fabaceae	Stylosanthes hamata	500377	8073356	2
Fabaceae	Stylosanthes hamata	494788	8075983	2
Fabaceae	Stylosanthes hamata	496513	8073167	2
Fabaceae	Stylosanthes hamata	499687	8067416	2
Fabaceae	Stylosanthes hamata	499677	8067413	1
Fabaceae	Stylosanthes scabra	499696	8067407	2
Fabaceae	Stylosanthes scabra	499677	8067413	1
Fabaceae	Stylosanthes scabra	500192	8073619	1
Malvaceae	Sida acuta	493898	8076151	2
Poaceae	Cynodon dactylon	502523	8067699	2
Poaceae	Digitaria ciliaris	499720	8067399	1
Poaceae	Echinochloa colona	499687	8067416	2

